The isolation and analysis of K. pneumoniae258 virulence factor genes at the molecular level

Authors

  • Zainab Mahdi Kadhom Al-Sendi Department of Microbiology, College of Medicine, University of Babylon, Iraq Author
  • Ilham A. Bunyan Department of Microbiology, College of Medicine, University of Babylon, Iraq Author

Keywords:

K. pneumoniae258, virulence factor genes, molecular level, PCR

Abstract

This cross-sectional study collected 100 clinical specimens from Hilla Teaching Hospital and Maijan Medical City patients aged 3 to 55, 65% of which were male and 35% female. Forty strains of K. pneumonia were isolated from 100 specimens from various infection locations by morphological, microscopical, biochemical, and Vitek II system testing. Eleven (27.5%) of the forty isolates were from sputum, nine (20%) from urine, seven (17.5%) from wound swabs, six (15%) from burn swabs, five (12.5%) from burn tissue, and three (7.5%) from ear swabs. K. pneumonia was isolated from 26 men (65%) and 14 women (35%). All of the possible K. pneumonia isolates had their DNA taken and ran through a standard PCR for pilv-1gene primer amplification using the sequences, the results revealed that only 16(40%) of the 40 K. pneumonia isolates were related to K. pneumonia258 by sharing the same 320 bp DNA fragment with the allelic ladder. Some virulence genes were detected in 16 K. pneumoniae258 isolates. The results showed that FimH all 16(100%) were positive to FimH gene of K. pneumoniae258 isolates at (688bp). However, mrkD gene were detected 13/16(81.2%) were positive to mrkD gene of K. pneumoniae258 isolates at (240bp). Objective: The aim of present study is to isolation of the K. pneumoniae 258 and the detection of K. pneumoniae 258 to some virulence genes. 

Downloads

Download data is not yet available.

References

Abozahra, R., Abdelhamid, S. M., Wen, M. M., Abdelwahab, I., & Baraka,

K. (2020). A Nanoparticles based Microbiological Study on the Effect

of Rosemary and Ginger Essential Oils against Klebsiella

pneumoniae. The Open Microbiology Journal, 14(1).

Ahn, D., Bhushan,G.,McConville, T. H., Annavajhala,M. K.,Soni, R.K., Lung,T.

W. F., ...&Prince, A. (2021). An acquired acyltransferase promotes Klebsiella

pneumoniaeST258 respiratory infection.Cell reports,35(9), 109196.

Aljanaby, A. A. J., & Alhasani, A. H. A. (2016). Virulence factors and

antibiotic susceptibility patterns of multidrug resistance Klebsiella

pneumoniae isolated from different clinical infections. African

Journal of Microbiology Research, 10(22), 829-843.

Bunyan, I. A., Naji, S. S., & Aljodoa, H. H. (2018). Molecular study of

adhesive properties in some bacteria isolated from throat infections.

Choby, J. E., Howard Anderson, J., & Weiss, D. S. (2020). Hypervirulent

Klebsiella pneumoniae-clinical and molecular perspectives. Journal

of internal medicine, 287(3), 283-300.

Cilloniz, C., Dominedo, C., & Torres, A. (2019). Multidrug resistant

gram-negative bacteria in community-acquired pneumonia. Annual

Update in Intensive Care and Emergency Medicine 2019, 459-475.

Clegg, S., & Murphy, C. N. (2017). Epidemiology and virulence of Klebsiella

pneumoniae. Urinary Tract Infections: Molecular Pathogenesis and

Clinical Management, 435-457.

Collee, J. G., Fraser A. G., Marmino B. P. and Simons A. (1996). Mackie

and McCartney Practical Medical Microbiology. 14thEd. the

Churchill Livingstone, Inc. USA.

Dai, P., & Hu, D. (2022). The making of hypervirulent Klebsiella

pneumoniae.Journal of Clinical Laboratory Analysis, 36(12), e24743.

de Araujo, L. C. A., da Purificacao-Junior, A. F., da Silva, S. M., Lopes, A. C. S.,

Veras,D.L.,Alves, L.C.,...&de Oliveira,M. B.M.(2019).In vitroevaluation

of mercury (Hg2+) effects on biofilm formation by clinical and

environmental isolates of Klebsiella pneumoniae. Ecotoxicology and

EnvironmentalSafety,169, 669-677.

Gato, E., Vazquez-Ucha, J. C., Rumbo-Feal, S., Alvarez-Fraga, L., Vallejo,

J. A., Martinez-Guitian, M., ... & Perez, A. (2020). Kpi, a chaperone¬

usher pili system associated with the worldwide-disseminated highrisk clone Klebsiella pneumoniae ST-15. Proceedings of the National

Academy of Sciences, 117(29), 17249-17259.

Hu, Y., Anes, J., Devineau, S., & Fanning, S. (2020). Klebsiella

pneumoniae: Prevalence, Reservoirs, Antimicrobial Resistance,

Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic

Bacterium. Foodborne Pathogens and Disease.

Kateete, D. P., Nakanjako, R., Namugenyi, J., Erume, J., Joloba, M. L., &

Najjuka, C. F. (2016). Carbapenem resistant Pseudomonas

aeruginosa and Acinetobacter baumannii at Mulago hospital in

Kampala, Uganda (2007-2009). Springerplus, 5, 1-11.

Kennedy, T. C., Proudfoot, S. P., Piantadosi, S., Wu, L., Saccomanno, G.,

Petty, T. L., & Tockman, M. S. (1999). Efficacy of two sputum

collection techniques in patients with air flow obstruction. Acta

cytologica, 43(4), 630.

Lin, T. H., Tseng, C. Y., Lai, Y. C., Wu, C. C., Huang, C. F., & Lin, C. T.

(2017). IscR regulation of type 3 fimbriae expression in Klebsiella

pneumoniae CG43. Frontiers in Microbiology, 8, 1984.

Liu, C., & Guo, J. (2019). Hypervirulent Klebsiella pneumoniae

(hypermucoviscous and aerobactin positive) infection over 6 years in the elderly in China: antimicrobial resistance patterns, molecular

epidemiology and risk factor. Annals of clinical microbiology and

antimicrobials, 18(1), 4.

Luo, M., Yang, S., Li, X., Liu, P., Xue, J., Zhou, X., ... & Li, Y. (2017). The

KP1_4563 gene is regulated by the cAMP receptor protein and

controls type 3 fimbrial function in Klebsiella pneumoniae NTUHK2044. PloS one, 12(7), eO180666.

Mandras, N., Roana, J., Comini, S., Cuffini, A., & Tullio, V. (2020).

Antifungal properties of selected essential oils and pure compounds

on emerging candida non-albicans species and uncommon

pathogenic yeasts. In Abstract Book (pp. 45-45). Societa Italiana di

Microbiologia.

Marques, C., Belas, A., Aboim, C., Cavaco-Silva, P., Trigueiro, G., Gama,

L. T., & Pomba, C. (2019). Evidence of sharing of Klebsiella

pneumoniae strains between healthy companion animals and

cohabiting humans. Journal of clinical microbiology, 57(6).

Martin, R. M., & Bachman, M. A. (2018). Colonization, infection, and the

accessory genome of Klebsiella pneumoniae. Frontiers in cellular and

infection microbiology, 8, 4.

Mendes, G., Ramalho, J. F., Bruschy-Fonseca, A., Lito, L., Duarte, A., MeloCristino, J., & Caneiras, C. (2022). Whole-genome sequencing enables

molecular characterization of non-clonal group 258 high-risk clones (STB,

ST17, ST147 and ST307) among Carbapenem-resistant Klebsiella

pneumoniae from a tertiary University Hospital Centre in

Portugal.Microorganisms, 10(2), 416.

Michaelis, C., & Grohmann, E. (2023). Horizontal Gene Transfer of

Antibiotic Resistance Genes in Biofilms. Antibiotics, 12(2), 328.

Mirzaie, A., & Ranjbar, R. (2021). Antibiotic resistance, virulenceassociated genes analysis and molecular typing of Klebsiella

pneumoniae strains recovered from clinical samples. AMB

Express, 11, 1-11.

Monesh Babu, J., S Smiline Girija, A., Sankar Ganesh, P., & Vijayashree

Priyadharsini, J. (2021). Distribution of Four Biofilm Associated

Gene among A. baumannii by in Silico-PCR.

Moon, D. C., Choi, J. H., Boby, N., Kang, H. Y., Kim, S. J., Song, H. J.,... & Lim,

S. K. (2022). Bacterial Prevalence in Skin, Urine, Diarrheal Stool, and

Respiratory Samples from Dogs.Microorganisms, 10(8), 1668.

Moore, N. M. (2017). Epidemiology and characterization of Klebsiella

pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae

in Chicago long-term acute care hospitals (Doctoral dissertation,

Rush University).

Morgenroth-Rebin, J. (2023). Towards the Characterization of Putative

Degradation Targets of Klebsiella pneumoniae Lon Protease by

Quantitative Proteomics and in vitro Degradation Assays (Doctoral

dissertation, University of Guelph).

Paczosa, M. K., & Mecsas, J. (2016). Klebsiella pneumoniae: going on the

offense with a strong defense. Microbiology and molecular biology

reviews, 80(3), 629-661.

Panjaitan, N. S. D., Horng, Y. T., Cheng, S. W., Chung, W. T., & Soo, P. C.

(2019). EtcABC, a putative Eli complex, regulates type 3 fimbriae via

CRP-cAMP signaling in Klebsiella pneumoniae. Frontiers in

microbiology, 10, 1558.

Ramsay, S., Cowan, L., Davidson, J. M., Nanney, L., & Schultz, G. (2016).

Wound samples: moving towards a standardised method of

collection and analysis. International wound journal, 13(5), 880-891.

Reyes Chacon, J. A. (2019). Characterization of mobile genetic elements

in carbapenem resistant Enterobacteriaceae isolates from

Ecuadorian hospitals (Master's thesis, Quito).

Riwu, K. H. P., Effendi, M. H., & Rantam, F. A. (2020). A Review of

Extended Spectrum p-Lactamase (ESBL) Producing Klebsiella

pneumoniae and Multidrug Resistant (MDR) on Companion

Animals. Systematic Reviews in Pharmacy, 11(7).

Schroll, C., Barken, K. B., Krogfelt, K. A., &Struve, C. (2010). Role of type

and type 3 fimbriae in Klebsiella pneumoniae biofilm

formation. BMC microbiology, 10, 1-10.

Shankar, U., Jain, N., Mishra, S. K., Sharma, T. K., & Kumar, A. (2020).

Conserved G-quadruplex motifs in gene promoter region reveals a

novel therapeutic approach to target multi-drug resistance Klebsiella

pneumoniae. Frontiers in microbiology, 11, 1269.

Sillanpaa, S., Kramna, L., Oikarinen, S., Sipila, M., Rautiainen, M.,

Aittoniemi, J., ... & Cinek, O. (2017). Next-generation sequencing

combined with specific PCR assays to determine the bacterial 16S

rRNA gene profiles of middle ear fluid collected from children with

acute otitis media. Msphere, 2(2).

Sofiana, E. D., Pratama, J. W. A., Effendi, M. H., Plumeriastuti, H.,

Wibisono, F. M., Hartadi, E. B., & Hidayatullah, A. R. (2020). A

Review of the Presence of Antibiotic Resistance Problems on

Klebsiella Pneumoniae Acquired from Pigs: Public Health

Importance. Sys Rev Pharm 2020; 11 (9): 535, 543.

Surgers, L., Boyd, A., Girard, P. M., Arlet, G., & Deere, D. (2019). Biofilm

formation by ESBL-producing strains of Escherichia coli and

Klebsiella pneumoniae. International Journal of Medical

Microbiology, 309(1), 13-18.

Vandepitte, J., Engbaek, P., Piot, P. and Heuck, C. (1991). Basic

laboratory procedures in clinical bacteriology.Geneva, World Health

Organization: 31-35.

Walker, K. A., Treat, L. P., Sepulveda, V. E., & Miller, V. L. (2020). The

small protein RmpD drives hypermucoviscosity in Klebsiella

pneumoniae. MBio, 11(5), e01750-20.

Wang, G., Zhao, G., Chao, X., Xie, L., & Wang, H. (2020). The

characteristic of virulence, biofilm and antibiotic resistance of

Klebsiella pneumoniae. International Journal of Environmental

Research and Public Health, 17(17), 6278.

Willsey, G. G. (2018). Detection Of The Lung Environment By Multi¬ Drug Resistant Gram-Negative Bacterial Pathogens.

Yaqoob, A. A., Bakar, M. A. B. A., Kim, H. C., Ahmad, A., Alshammari, M. B., & Yaakop, A. S. (2022). Oxidation of food waste as an organic substrate in a single chamber microbial fuel cell to remove the pollutant with energy generation. Sustainable Energy Technologies and Assessments, 52, 102282.

Yuan, F., Huang, Z., Yang, T., Wang, G., Li, P., Yang, B., & Li, J. (2021). Pathogenesis of Proteus mirabilis in catheter-associated urinary tract infections. Urologia Internationalis, 105(5-6), 354-361.

Published

2023-02-28

Issue

Section

Articles

How to Cite

Mahdi Kadhom Al-Sendi, Z., & A. Bunyan, I. (2023). The isolation and analysis of K. pneumoniae258 virulence factor genes at the molecular level. History of Medicine, 9(1). http://13.200.237.241/HOM/index.php/medicine/article/view/885