The Level of T Cells Specific to the SARS-Cov-2 Virus and Asymptomatic Infection and the Immunogenicity of a Vaccine.

Authors

  • Hayam A. Desoky Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia. Author

Keywords:

T- cell, SARS-Cov2, 1L2, IFN, cytokine

Abstract

 A robust T cell response can lead to milder infections. It can also establish memory pools and can respond to certain SARS-CoV-2 variants. T cells are mainly directed toward epitopes that are part of conserved peptides. Although the effects of IL2 and IFN on long-term immunity are still unclear, it is believed that these two factors play a role in the development of TH1 responses in uninfected individuals. By analyzing the responses of the participants, we were able to determine that 9 out of the 11 individuals exhibited dual-producing IFN/IL-2+ T cells, decreasing to 8 out of 10 for the asymptomatic group. The reduction in the levels of 1L2 in THltype cells, which came from asymptomatic infection, has made it possible to predict the response of T cells to IFN in people with no previous history of infection or vaccination. After the first vaccination, the not-vaccinated participants had a high level of IL-2 response. Compared to AstraZeneca's vaccine, the Pfizer vaccine was more likely to elicit a higher L2 response. On the other hand, the IFN response of the AstraZeneca vaccine was not significantly different from that of the Pfizer vaccine. 

Downloads

Download data is not yet available.

References

Ahmed, S. F., Quadeer, A. A., & McKay, M.

R. (2020). Preliminary identification of

potential vaccine targets for the COVID-19

Coronavirus (SARS-CoV-2) Based on SARSCoV Immunological Studies. Viruses, 12(3).

https://doi.org/10.3390/vl2030254

Ameratunga, R., Longhurst, H., Steele, R.,

Lehnert, K., Leung, E., Brooks, A. E. S., &

Woon, S. T. (2021). Common Variable

Immunodeficiency Disorders, T-Cell

Responses to SARS-CoV-2 Vaccines, and the

Risk of Chronic COVID-19. Journal of Allergy

and Clinical Immunology: In Practice, 9(10).

https://doi.Org/10.1016/j.jaip.2021.06.019

Biswas, B., Chattopadhyay, S., Hazra, S.,

Hansda, A. K., & Goswami, R. (2022). COVID-

pandemic: the delta variant, T-cell responses,

and the efficacy of developing vaccines. In

Inflammation Research (Vol. 71, Issue 4).

https://doi.oig/10.1007/s00011-022-01555-5

Bitoun, S., Henry, J., Desjardins, D„ VauloupFellous, C., Dib, N., Belkhir, R., Mouna, L„ Joly,

C., Bitu, M„ Ly, B„ Pascaud, J., Seror, R„ Roque

Afonso,A. M„ Le Grand, R., & Mariette,X. (2022).

Rituximab Impairs B Cell Response But Not T Cell

Response to COVID-19 Vaccine in Autoimmune

Diseases. Arthritis and Rheumatology, 74(6).

https://doi.oig/10.1002/art.42058

Castillo, P., Ogando-Rivas, E., Jones, N.,

Trivedi, V., Mendez-Gomez, H., Guimaraes,

F., Yang, C., Wingard, J., Sayour, E., &

Mitchell, D. (2021). Ex vivo activation of

SARS-COV-2 specific t cells using RNAloaded human antigen presenting cells.

Pediatric Blood and Cancer, 6VSUPPL 3).

Grifoni, A., Weiskopf, D., Ramirez, S. I., Mateus,

J., Dan, J. M., Moderbacher, C. R., Rawlings, S.

A., Sutherland, A., Premkumar, L., Jadi, R. S.,

Marrama, D., de Silva, A. M., Frazier, A., Carlin,

A. F., Greenbaum, J.A, Peters, B., Krammer, F.,

Smith, D. M., Crotty, S., & Sette, A. (2020).

Taigets of T Cell Responses to SARS-CoV-2

Coronavirus in Humans with COVID-19 Disease

and Unexposed Individuals. Cell, 181(7).

https://doi.Org/10.1016/j.cell.2020.05.015

He, Q., Mao, Q., An, C., Zhang, J., Gao, F.,

Bian, L., Li, C., Liang, Z., Xu, M., & Wang, J.

(2021). Heterologous prime-boost: breaking the

protective immune response bottleneck of

COVID-19 vaccine candidates. Emerging

Microbes and Infections, 10().

https://doi.oig/10.1080/22221751.2021.190224

Heitmann, J. S., Bilich, T., Tandler, C.,

Nelde, A., Maringer, Y., Marconato, M.,

Reusch, J., Jager, S., Denk, M., Richter, M.,

Anton, L., Weber, L. M., Roerden, M.,

Bauer, J., Rieth, J., Wacker, M., Horber, S.,

Peter, A., Meisner, C„ ... Walz, J. S. (2022). A

COVID-19 peptide vaccine for the induction

of SARS-CoV-2 T cell immunity. Nature,

(7894). https://d0i.0rg/l 0.1038/s41586-

-04232-5

Ishii, H., Nomura, T., Yamamoto, H.,

Nishizawa, M.,Thu Hau, T.T., Harada, S., Seki,

S., Nakamura-Hoshi, M., Okazaki, M., Daigen,

S., Kawana-Tachikawa, A., Nagata, N., IwataYoshikawa, N., Shiwa, N., Suzuki, T., Park, E.

S., Ken, M., Onodera, T., Takahashi, Y, ...

Matano, T. (2022). Neutralizing-antibodyindependent SARS-CoV-2 control correlated

with intranasal-vaccine-induced CD8+ T cell

responses. Cell Reports Medicine, 3(2).

https://doi.oig/10.1016/j.xcrm.2022.100520

Jung, M. K., & Shin, E. C. (2021). Phenotypes

and functions of sars-cov-2-reactive t cells. In

Molecules and Cells (Vol. 44, Issue 6).

https://doi.oig/10.14348/molcells.2021.0079

Kalimuddin, S., Tham, C. Y. L,, Qui, M., de

Alwis, R., Sim, J. X. Y., Lim, J. M. E., Tan,

H. C., Syenina, A., Zhang, S. L., Le Bert, N.,

Tan, A. T., Leong, Y. S., Yee, J. X., Ong, E.

Z., Ooi, E. E., Bertoletti, A., & Low, J. G.

(2021). Early T cell and binding antibody

responses are associated with COVID-19

RNA vaccine efficacy onset. Med, 2(6).https://doi.Org/10.1016/j.medj.2021.04.003

Lozano-Ojalvo, D., Camara, C., LopezGranados, E., Nozal, P., del Pino-Molina, L.,

Bravo-Gallego, L. Y, Paz-Artal, E., Pion, M.,

Correa-Rocha, R., Ortiz, A., Lopez-Hoyos, M.,

Iribarren, M. E., Portoles, J., Rojo-Portoles, M.

P., Ojeda, G., Cervera, L, Gonzalez-Perez, M.,

Bodega-Mayor, L, Montes-Casado, M., ...

Ochando, J. (2021). Differential effects of the

second SARS-CoV-2 mRNA vaccine dose on T

cell immunity in naive and COVID-19 recovered

individuals. Cell Reports, 36(8).

https://doi.oig/10.1016/j.celrep.202L109570

Madelon, N„ Heikkila, N., Royo, I. S.,

Fontarmaz, P., Breville, G., Lauper, K.,

Goldstein, R., Grifoni, A., Sette, A., Siegrist,

C. A., Finckh, A., Lalive, P. H.,

Didierlaurent, A. M., & Eberhardt, C. S.

(2022). Omicron-Specific Cytotoxic T-Cell

Responses After a Third Dose of mRNA

COVID-19 Vaccine Among Patients With

Multiple Sclerosis Treated With Ocrelizumab.

JAMA Neurology,

(4).hitps://doi.org/10.1001/jamaneurol.20

0245

Mateus, J., Dan, J. M., Zhang, Z.,

Moderbacher, C. R., Lammers, M.,

Goodwin, B., Sette, A., Crotty, S., &

Weiskopf, D. (2021). Low-dose mRNA-1273

COVID-19 vaccine generates durable

memory enhanced by cross-reactive T cells.

Science, 374(6566).

https://doi.org/10.1126/science.abj9853

Niessl, J., Sekine, T., & Buggert, M. (2021). T

cell immunity to SARS-CoV-2. In Seminars in

Immunology (Vol. 55).

https://doi.Org/10.1016/j.smim.2021.101505

Rice, A., Verma, M., Shin, A, Zakin, L., Sieling,

P., Tanaka, S., Balint, J., Dinkins, K., Adisetiyo,

H., Morimoto, B., Higashide, W., Anders Olson,

C., Mody, S., Spilman, P., Gabitzsch, E., Safrit,

J. T., Rabizadeh, S., Niazi, K., & Soon-Shiong,

P. (2021). Intranasal plus subcutaneous prime

vaccination with a dual antigen COVID-19

vaccine elicits T-cell and antibody responses in

mice. Scientific Reports, 77(1).

https://doi.oig/10.1038/s41598-021-94364-5

Sadarangani, M., Marchant, A., & Kollmann,

T. R. (2021). Immunological mechanisms of

vaccine-induced protection against COVID-

in humans. Nature Reviews Immunology,

(8). https://doi.org/10.1038/s41577-021-

-z

Sahin, U., Muik, A., Derhovanessian, E., Vogler,

L, Kranz, L. M., Vormehr, M., Baum, A.,

Pascal, K., Quandt, J., Maurus, D.,

Brachtendorf, S., Lorks, V., Sikorski, J., Hilker,

R., Becker, D., Eller, A. K., Griitzner, J.,

Boesler, C., Rosenbaum, C., ... Tiireci, O.

(2020). COVID-19 vaccine BNT162bl elicits

human antibody and TH1 T cell responses.

Nature, 586(7836).

https://doi.oig/10.1038/s41586-020-2814-7

Sauer, K., & Harris, T. (2020). An Effective

COVID-19 Vaccine Needs to Engage T Cells.

Frontiers in Immunology, 11.

https://doi.org/10.3389/fimmu.2020.581807

Sette, A., & Crotty, S. (2021). Adaptive

immunity to SARS-CoV-2 and COVID-19.

In Cell (Vol. 184, Issue 4).

https://doi.Org/10.1016/j.cell.2021.01.007

Smith, C. C,, Olsen, K. S., Gentry, K. M.,

Sambade, M., Beck, W., Garness, J.,

Entwistle, S., Willis, C., Vensko, S., Woods,

A., Fini, M., Carpenter, B., Routh, E.,

Kodysh, J., O’Donnell, T., Haber, C., Heiss,

K., Stadler, V., Garrison, E., ... Rubinsteyn,

A. (2021). Landscape and selection of vaccine

epitopes in SARS-CoV-2. Genome Medicine,

(). https://doi.org/10.1186/sl3073-021-

-1

Tarke, A., Sidney, J., Methot, N., Yu, E. D., Zhang, Y., Dan, J. M., Goodwin, B., Rubiro, P., Sutherland, A., Wang, E., Frazier, A., Ramirez, S. L, Rawlings, S. A., Smith, D. M., da Silva Antunes, R., Peters, B.,Scheuermann, R. H., Weiskopf, D., Crotty, S,, ... Sette, A. (2021). Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Reports Medicine, 2(7). https://doi.org/!0.1016/j.xcrm.2O21.100355

Woldemeskel, B. A., Dykema, A. G., Garliss, C. C„ Cherfils, S., Smith, K. N„ & Blankson, J. N. (2022). CD4+ T cells from COVID-19 mRNA vaccine recipients recognize a conserved epitope present in diverse coronaviruses. Journal of Clinical Investigation, 132(5). https://doi.org/10.1172/JCI156083

Downloads

Published

2023-02-28

Issue

Section

Articles

How to Cite

A. Desoky, H. (2023). The Level of T Cells Specific to the SARS-Cov-2 Virus and Asymptomatic Infection and the Immunogenicity of a Vaccine. History of Medicine, 9(1). http://13.200.237.241/HOM/index.php/medicine/article/view/852