Genotyping of rs12997 SNP in binding site of let-7b miRNA in colorectal cancer

Authors

  • Al–Fetlawy Abbas Raheeem Ibraheem University of Kufa/ Faculty of Medicine/ Department of Pathology and Forensic Medicine/Iraq Author
  • AL-kilabi Liwaa Hussein Mahdi University of Kufa/ Faculty of Medicine/ Department of Pathology and Forensic Medicine/Iraq Author
  • Al-Terehi Mona Najah University of Babylon/ college of science/ Department of biology/Iraq Author

Keywords:

Genotyping, rs12997 SNP, binding site, let-7b miRNA, colorectal cancer.

Abstract

 The current study aims to Genotyping of rs12997 SNP in binding site of let-7b miRNA in ACVR1 gene using PCR-sequencing, the results found the percentage of deletion mutation in patient was 66.66% while in control group 3.7 % in highly significant differences, other study characteristic non- significantly association with rs12997 belong to the gender the deletion mutation was higher in male 41.66% than female 25%, the percentage of deletion mutation was a same percentage (10.41%) in both in Adenocarcinoma and Mucinous adenocarcinoma, in cancer grade the highest percentage was observed in well differentiated (37.5%) and moderate differentiated (29.16%), the deletion mutation appeared in all grades of lymph node metastases, in the N0 (31.25%), N1 (14.58 %) , N2 (8.33%), N1b (2.08%), N2b (6.25%) and N2a (4.16%). the highest percentage of deletion mutation observed in III and I (20.83%) , and in II ,IIA and IIIb (6.25%), According to metastasis the M1 deletion mutation was (4.16%) whlile in the Mx the deletion mutation was (2.08%) , non-sig assocation abserved between genotypes (CT, CC, and TT) between patients and control (p 1.3333, 0.3811) and also non- significant association with cancer characteristic in current study. The findings concluded that the deletion mutation was strong association with colorectal cancer but genotypes didn't effecte in colorectal cancer characteristics. 

Downloads

Download data is not yet available.

References

Skeeles LE, Fleming JL, Mahler KL, Toland AE. The impact of

' UTR variants on differential expression of candidate

cancer susceptibility genes. PLoS ONE. 2013;8:e58609.

Iorio MV, Croce CM. MicroRNA dysregulation in cancer:

diagnostics, monitoring and therapeutics. A

comprehensive review. EMBO Mol Med. 2012;4:143-59.

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al.

Frequent deletions and down-regulation of micro-RNA genes

miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.

Proc Natl Acad Sci USA. 2002;99:15524-9. Cargill M,

Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, et al.

Characterization of single-nucleotide polymorphisms in

coding regions of human genes. Nat Genet. 1999;22:231.

Sukhumsirichart W. Polymorphisms. In Genetic Diversity and

disease susceptibility. IntechOpen. 2018;76:728.Altshuler D, Donnelly P, Consortium IH. A haplotype map of

the human genome. Nature. 2005;437:1299.

Guo L, Du Y, Chang S, Zhang K, Wang J. rSNPBase: a

database for curated regulatory SNPs. Nucleic Acids Res.

O13;42(D1): D1O33-D9.

Steri M, Idda ML, Whalen MB, Orru V. Genetic variants in

mRNA untranslated regions. Wiley Interdiscip Rev: RNA,

;9:e1474.

Schwerk J, Savan R. Translating the untranslated region.

Jlmmunol. 2015;195:2963-71.

Sukhumsirichart W. Polymorphisms. In Genetic Diversity and

disease susceptibility. IntechOpen. 2018;76:728.

Mullany LE, Herrick JS, Wolff RK, Slattery ML. Single

nucleotide polymorphisms within MicroRNAs, MicroRNA

targets, and MicroRNA biogenesis genes and their

impact on colorectal cancer survival. Genes

Chromosomes Cancer. 2017 Apr;56(4):285-295. doi:

1002/gcc.22434. Epub 2017 Jan 25. PMID: 27859935;

PMCID: PMC6007859.

Altshuler D, Donnelly P, Consortium IH. A haplotype map of

the human genome. Nature. 2005;437:1299.

Guo L, Du Y, Chang S, Zhang K, Wang J. rSNPBase: a

database for curated regulatory SNPs. Nucleic Acids Res.

;42(D1):D1033-D9. PubMed PubMed

Central Article CAS Google Scholar

Steri M, Idda ML, Whalen MB, Orru V. Genetic variants in

mRNA untranslated regions. Wiley Interdiscip Rev: RNA.

a;9:e1474.

Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P,

Vodickova L, et al. Polymorphisms within micro-RNAbinding sites and risk of sporadic colorectal cancer.

Carcinogenesis. 2008;29:579-84.

Ding H-X, Lv Z, Yuan Y, Xu Q. MiRNA polymorphisms and

cancer prognosis: a systematic review and meta¬

analysis. Front Oncol. 2018;8:596. PubMed PubMed

Central Article Google Scholar

Ryan BM, Robles Al, Harris CC. Genetic variation in

microRNA networks: the implications for cancer

research. Nat Rev Cancer. 2010;10:389

Renlund N, O'Neill FH, Zhang L, Sidis Y, Teixeira J. Activin

receptor-like kinase-2 inhibits activin signaling by

blocking the bind¬

ing of activin to its type II receptor. J Endocrinol. 2007;

:95-103.

Wu TC, Jih MH, Wang L, Wan YJ. Expression of activin

receptor Hand 1 1B mRNA isoforms in mouse reproductive

organs and oocytes.Mol Reprod Dev. 1994;38:9-15.

Donaldson CJ, Mathews LS, Vale WW. Molecular cloning

andbinding properties of the human type II activin

receptor. BiochemBiophys Res Comm. 1992;184: 310-6.

Eresen Yazicioglu C, Karatosun V, Kizildag S, Ozsoylu D,

KavukcuS. Acvrl Gene mutations in four Turkish patients

diagnosed asfibrodysplasia ossificans progressiva. Gene.

;515:444-6.

Wiley LA, Rajagopal R, Dattilo LK, Beebe DC. The tumor

suppressor gene TRP53 protects the mouse lens against

posterior subcapsularcataracts and the bmp receptor

ACVR1 acts as a tumor suppressor in the lens. Disease

Models Meeh. 2011; 4: 484-95.

Ambrosio EP, Drigo SA, Bergamo NA, Rosa FE, Bertonha FB,

deAbreu FB, et al. Recurrent copy number gains of

ACVR1 andcorresponding transcript overexpression are

associated with survivalin head and neck sguamous cell

carcinomas. Histopathology.

;59:81-9.

Gong, Jing; Shen, Na; Zhang, Hong-Mei; Zhong, Rong; Chen,

Wei; Miao, Xiaoping; Guo, An-Yuan (2014). A genetic

variant in microRNA target site of TGF- signaling

pathway increases the risk of colorectal cancer in a

Chinese population. Tumor Biology, 35(5), 4301-4306.

doi:10.1007/s13277-013-1562-9.

Klein U, Lia M, Crespo M, Siegel R, Shen G, Mo T et al. The

DLEU2/miR-15a/16-1 cluster controls B cell proliferation

and its deletion leads to chronic lymphocytic leukemia.

Cancer Cell 2010;17: 28-40.Return to ref 9 in article

Calin GA, Croce CM . MicroRNAs and chromosomal

abnormalities in cancer cells. Oncogene 2006; 25: 6202-

CAS PubMed Google Scholar

Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E,

Yendamuri S et al. Human microRNA genes are

freguently located at fragile sites and genomic regions

involved in cancers. Proc Natl Acad Sci USA 2004; 101:

-3004.

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et

al. Freguent deletions and down-regulation of micro¬

RNA genes miR15 and miR16 at 13g14 in chronic

lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99:

-15529.

Tagawa H, Seto M . A microRNA cluster as a target of

genomic amplification in malignant lymphoma.

Leukemia 2005; 19: 2013-2016. CAS PubMed Google

Scholar

Hayashita Y, Osada H, Tatematsu Y, Yamada H,

Yanagisawa K, Tomida S et al. A polycistronic microRNA

cluster, miR-17-92, is overexpressed in human lung

cancers and enhances cell proliferation. Cancer Res

; 65: 9628-9632. CAS PubMed Google Scholar

Mavrakis KJ, Wolfe AL, Oricchio E, Palomero T, de

Keersmaecker K, McJunkin K et al. Genome-wide RNAmediated interference screen identifies miR-19 targets in

Notch-induced T-cell acute lymphoblastic leukaemia.

Nat Cell Biol 2010; 12: 372-379.CAS PubMed PubMed

Central Google Scholar

Zhang L, Huang J, Yang N, Greshock J, Megraw MS,

Giannakakis A et al. MicroRNAs exhibit high freguency

genomic alterations in human cancer. Proc Natl Acad Sci

USA 2006; 103: 9136-9141. CAS PubMed PubMed

Central Google Scholar

Peng, Y., Croce, C. The role of MicroRNAs in human cancer.

Sig Transduct Target Ther 1, 15004 (2016).

https://doi.Org/10.1038/sigtrans.2015.4

Martello, G.; Rosato, A.; Ferrari, F.; Manfrin, A.; Cordenonsi,

M.; Dupont, S.; Enzo, E.; Guzzardo, V.; Rondina, M.;

Spruce, T.; et al. A MicroRNA targeting dicer for

metastasis control. Cell 2010, 141, 1195-1207. [CrossRef]

lliou, M.S.; da Silva-Diz, V.; Carmona, F.J.; RamalhoCarvalho, J.; Heyn, H.; Villanueva, A.; Munoz, P.; Esteller,

M. Impaired DICER1 function promotes sternness and

metastasis in colon cancer. Oncogene 2014, 33, 4003-

[CrossRef].

Lai, H.H.; Li, J.N.; Wang, M.Y.; Huang, H.Y.; Croce, C.M.; Sun,

H.L.; Lyu, Y.J.; Kang, J.W.; Chiu, C.F.; Hung, M.C.; et al.

HIF-1alpha promotes autophagic proteolysis of Dicer

and enhances tumor metastasis. J. Clin. Investig. 2018,

, 625-643. [CrossRef][PubMed]

van Kouwenhove, M.; Kedde, M.; Agami, R. MicroRNA

regulation by RNA-binding proteins and its implications

for cancer. Nat. Rev. Cancer 2011,11, 644-656. [CrossRef]

Viswanathan, S.R.; Powers, J.T.; Einhorn, W.; Hoshida, Y.; Ng, T.L;

Toffanin, S.; O'Sullivan, M.; Lu, J.; Phillips, L.A.; Lockhart; V.L;et

al. Lin28 promotes transformation and is associated with

advanced human malignancies.Nat.Genet. 2009, 41,843-848.[CrossRef]

Cho, J.; Chang, H.; Kwon, S.C.; Kim, B.; Kim, Y.; Choe, J.; Ha,

M.; Kim, Y.K.; Kim, V.N. LIN28A is a suppressor of ERassociated translation in embryonic stem cells. Cell 2012,

, 765-777. [CrossRef] [PubMed].

Shyh-Chang, N.; Daley, G.Q. Lin28: Primal regulator of

growth and metabolism in stem cells. Cell Stem Cell

, 12, 395-406.

[CrossRef]

Newman, M.A.; Thomson, J.M.; Hammond, S.M. Lin-28

interaction with the Let-7 precursor loop mediates

regulated microRNA

processing. RNA 2008, 14, 1539-1549. [CrossRef]

Piskounova, E.; Polytarchou, C.; Thornton, J.E.; LaPierre,

R.J.; Pothoulakis, C.; Hagan, J.P.; lliopoulos, D.; Gregory,

R.l. Lin28A

and Lin28B inhibit let-7 microRNA biogenesis by distinct

mechanisms. Cell 2011,147, 1066-1079. [CrossRef].

Michlewski, G.; Caceres, J.F. Post-transcriptional control of

miRNA biogenesis. RNA 2019, 25, 1-16. [CrossRef]

[PubMed]

Heo, I.; Joo, C.; Cho, J.; Ha, M.; Han, J.; Kim, V.N. Lin28

mediates the terminal uridylation of let-7 precursor

MicroRNA. Mol. Cell

, 32, 276-284. [CrossRef] [PubMed].

Viswanathan, S.R.; Powers, J.T.; Einhorn, W.; Hoshida, Y.; Ng,

T.L.; Toffanin, S.; O'Sullivan, M.; Lu, J.; Phillips, L.A.;

Lockhart, V.L.; et al. Lin28 promotes transformation and

is associated with advanced human malignancies. Nat.

Genet. 2009, 41,

-848. [CrossRef]

Heo, I.; Joo, C.; Kim, Y.K.; Ha, M.; Yoon, M.J.; Cho, J.; Yeom,

K.H.; Han, J.; Kim, V.N. TUT4 in concert with Lin28

suppresses

microRNA biogenesis through pre-microRNA uridylation.

Cell 2009, 138, 696-708. [CrossRef] [PubMed]

Downloads

Published

2023-02-28

Issue

Section

Articles

How to Cite

Abbas Raheeem Ibraheem , A., Liwaa Hussein Mahdi, A.- kilabi, & Mona Najah , A.-T. (2023). Genotyping of rs12997 SNP in binding site of let-7b miRNA in colorectal cancer. History of Medicine, 9(1). http://13.200.237.241/HOM/index.php/medicine/article/view/762