Green Synthesis of Mn3O4 Nanoparticles using chia seeds extract, characterization, and cytotoxicity on the HL-60 cells

Authors

  • Ibrahim Alaa Department of Chemistry, College of Education for Pure Science, University of Diyala, Iraq Author
  • Hammadi Mustafa Department of Chemistry, College of Education for Pure Science, University of Diyala, Iraq Author

Keywords:

Mn3O4 nanoparticles, HL-60 cells, chia seeds

Abstract

 In medicine, nanoparticles are successfully replacing anticancer drugs (NPs). In this study, Mn3O4-NPs were made using the green chemistry Chia seed extract method, and they were then characterized using various methods, including FTIR, XRD, EDX, and SEM. HL-60 cells were tested against Mn3O4 nanoparticles at varied concentrations (20, 40, 80, and 160 µg/ml), with an average size of 35.27 nm in the XRD. After 24 hours, the killing rate was 4%, 14%, 24%, and 40% in that sequence. Moreover, the rates were (4%, 26%, 44%, and 40%) in that sequence after 48 hours. Half-maximal inhibitory concentrations (IC50) for Mn3O4 -NPs are 220.5 at 24 hours and 97.83 at 48 hours. Mn3O4 nanoparticles offer potential therapeutic advantages as anticancer drugs. The drug was safe at all concentrations (not harmful). 

Downloads

Download data is not yet available.

References

Wu, S„ Zhu, W., Thompson, P., & Hannun, Y. A. (2018).

Evaluating intrinsic and non-intrinsic cancer risk factors.

Nature communications, 9(1), 3490.

Park, W., Heo, Y. J., & Han, D. K. (2018). New opportunities

for nanoparticles in cancer immunotherapy.

Biomaterials research, 22, 1-10.

Jovcevska, I., & Muyldermans, S. (2020). The therapeutic

potential of nanobodies. BioDrugs, 34(1), 11-26.

Lacouture, M., & Sibaud, V. (2018). Toxic side effects of

targeted therapies and immunotherapies affecting the

skin, oral mucosa, hair, and nails. American journal of

clinical dermatology, 19(Suppl 1), 31-39.

Shin, W. K., Cho, J., Kannan, A. G., Lee, Y. S„ & Kim, D. W.

(2016). Cross-linked composite gel polymer electrolyte

using mesoporous methacrylate-functionalized SiO2

nanoparticles for lithium-ion polymer batteries.

Scientific reports, 6(1), 26332.

Prajapati, A. K., & Mondal, M. K. (2021). Novel green strategy for

CuO-ZnO-C nanocomposites fabrication using marigold

(Tagetes spp.) flower petals extract with and without CTAB

treatment foradsorptionof Cr (VI) and Congored dye.Journal

of Environmental Management, 290,112615.

Abdallah, O. M., EL-Baghdady, K. Z., Khalil, M. M., El

Borhamy, M. I., & Meligi, G. A. (2020). Antibacterial,

antibiofilm and cytotoxic activities of biogenic polyvinyl

alcohol-silver and chitosan-silver nanocomposites.

Journal of Polymer Research, 27, 1-9.

Ahamed, M., Akhtar, M. J., Khan, M. M., & Alhadlaq, H. A.

(2021). A novel green preparation of Ag/RGO

nanocomposites with highly effective anticancer

performance. Polymers,13(19), 3350.

Khan, A., Colmenares, J. C., & Glaser, R. (2020). Lignin-based

composite materials for photocatalysis and

photovoltaics. Lignin Chemistry, 1-31.

Nasrollahzadeh, M., Baran, T., Baran, N. Y., Sajjadi, M.,

Tahsili, M. R., & Shokouhimehr, M. (2020). Pd

nanocatalyst stabilized on amine-modified zeolite:

Antibacterial and catalytic activities for environmental

pollution remediation in aqueous medium. Separation

and Purification Technology, 239, 116542.

Feng, H., & Qian, Z. (2018). Functional carbon quantum dots:

a versatile platform for chemosensing and biosensing.

The Chemical Record, 18(5), 491-505.

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles:

Properties, applications and toxicities. Arabian journal of

chemistry, 12(7), 908-931.

Ahmadisoltansaraei, K., & Moghaddam, J. (2014).

Preparation of NiO nanoparticles from Ni (OH) 2- NiCO

- 4H 2 O precursor by mechanical activation.

International Journal of Minerals, Metallurgy, and

Materials, 21, 726-735.

Birch, H., Hammershoj, R. H., & Mayer, P. (2016).

Biodegradation of volatile hydrocarbons in five surface

waters tested as composed mixtures in the pg/L range.

In SETAC Europe 26th Annual Meeting, SETAC Europe

(Vol. 119).

Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Maaza, M.,

Ayeshamariam, A., & Kennedy, L. J. (2016). Green

synthesis of NiO nanoparticles using Moringa oleifera

extract and their biomedical applications: Cytotoxicity

effect of nanoparticles against HT-29 cancer cells.

Journal of Photochemistry and Photobiology B: Biology,

, 352-360.

Sabouri, Z., Akbari, A., Hosseini, H. A., Khatami, M., &

Darroudi, M. (2020). Tragacanth-mediate synthesis of

NiO nanosheets for cytotoxicity and photocatalytic

degradation of organic dyes. Bioprocess and biosystems

engineering, 43, 1209-1218.

Hoseinpour, V., & Ghaemi, N. (2018). Green synthesis of

manganese nanoparticles: Applications and future

perspective-A review. Journal of Photochemistry and

Photobiology B: Biology, 189, 234-243.

Kumar, V., Singh, K., Panwar, S., & Mehta, S. K. (2017). Green

synthesis of manganese oxide nanoparticles for the

electrochemical sensing of p-nitrophenol. International

Nano Letters, 7, 123-131.

Bhattacharya, P., Swain, S., Giri, L., & Neogi, S. (2019).

Fabrication of magnesium oxide nanoparticles by solvent

alteration and their bactericidal applications. Journal of

Materials Chemistry B, 7(26), 4141-4152.

Shin, S. W., Song, I. H., & Um, S. H. (2015). Role of

physicochemical properties in nanoparticle toxicity.

Nanomaterials, 5(3), 1351-1365.

Salah, M., Hammadi, M., Hummadi, E.H.)2O21(. Anticancer

activity and cytotoxicity of ZnS nanoparticles on MCF-7

human breast cancer cells. Biochemical and Cellular

Archives, 21(1), pp. 95-99

Wayne, P. A. (2011). Clinical and laboratory standards

institute. Performance standards for antimicrobial

susceptibility testing.

Shaik, M. R., Syed, R., Adil, S. F., Kuniyil, M., Khan, M.,

Alqahtani, M. S., ... & Awwad, E. M. (2021). Mn3O4

nanoparticles: Synthesis, characterization and theirantimicrobial and anticancer activity against A549 and

MCF-7 cell lines. Saudi Journal of Biological Sciences,

(2), 1196-1202.

Aminoff G, "Ueber die Kristallstruktur von Hausmannit (Mn

Mn2 04).", Zeitschrift fuer Kristallographie

Kristallgeometrie, Kristallphysik,Kristallchemie (-

,1977) 64, 475-490 (1926).

Arakha, M., Pal, S., Samantarrai, D., Panigrahi, T. K., Mallick,

B. C., Pramanik, K., ... & Jha, S. (2015). Antimicrobial

activity of iron oxide nanoparticle upon modulation of

nanoparticle-bacteria interface. Scientific reports, 5(1),

-12.

Khatami, M., Alijani, H. Q., Fakheri, B., Mobasseri, M. M.,

Heydarpour, M., Farahani, Z. K., & Khan, A. U. (2019).

Super-paramagnetic iron oxide nanoparticles (SPIONs):

Greener synthesis using Stevia plant and evaluation of

its antioxidant properties. Journal of Cleaner

Production, 208, 1171-1177.

Zhi, D., Yang, T., Yang, J., Fu, S., & Zhang, S. (2020).

Targeting strategies for superparamagnetic iron oxide

nanoparticles in cancer therapy. Acta biomaterialia,102,

-34.

Downloads

Published

2023-02-28

Issue

Section

Articles

How to Cite

Alaa, I., & Mustafa , H. (2023). Green Synthesis of Mn3O4 Nanoparticles using chia seeds extract, characterization, and cytotoxicity on the HL-60 cells. History of Medicine, 9(1). http://13.200.237.241/HOM/index.php/medicine/article/view/712