Molecular characterization using RAPD, ISSR, SCoT markers and antibacterial activity for two Vinca (vinca roseus L.) Genotypes cultivated in Iraq.

Authors

  • Najar Taif Razzaq Majeed Medical Laboratory department, Kufa institute, Al-Furat Al-Awsat Technical University, Kufa, Iraq Author
  • Abdulla NibrasYahya College of Science /kufa University Author
  • Thamir Attyaf Jameel College of Science /kufa University Author
  • Alshawi Ahmed Medical Laboratory department, Kufa institute, Al-Furat Al-Awsat Technical University, Kufa, Iraq. Author
  • Mohammed Mohammed Subhi Medical Laboratory department, Kufa institute, Al-Furat Al-Awsat Technical University, Kufa, Iraq Author
  • Al-Tamimi Qasim Mohammed Jabber General Directorate of Wasite Education Author

Keywords:

SCOT,RAPD,ISSR,Vinca,antibacterial

Abstract

 The current study was conducted at biology department in faculty of science / university of Kufa for molecular identification to identifiy variation between white vinca (pure variety ) and local vinca variety (pink) at both molecular level using RAPD, ISSR and SCoT markers and examining antibacterial activity of leaf methanolic, ethanolic crude extracts and phenolic crude against E.coli, Proteus, Enterococcus , K. pneumonia, S. aureus, Salmonella, Acinetobacter ,P. aeruginosa and Enterobacter. markers variad among them in their ability to reveal genetic variation. Higher polymorphism produced by OPA-01, and OPA-02 (50%), (75%) by 17899A and (44 %) by ScoT 36. Higher unique fingerprint produced by RAPD markers followed by ISSR markers and SCoT markers. Results showed that methanol extract of white Vinca demonstrated a greater impact on bacterial growth than purple Vinca, size of inhibition zone grew to approximately 10.6 and 3.5 millimeters respectively, phenolic compounds of methanol extract of white Vinca demonstrated a greater impact on bacterial growth than purple Vinca and the size of the inhibition zone grew to approximately 22.4and 18.9 millimeters respectively 

Downloads

Download data is not yet available.

References

Sharma, A.; Rajpurohit, D; Jain, D; Verma,

P. and Joshi, A. (2019). Molecular

characterization of coriander (Coriandrum

sativum L.) genotypes using random amplified

polymorphic DNA (RAPD) markers. Journal

of Pharmacognosy and Phytochemistry, 8(3):

-4775.

Al-Judy, N.J. (2004). Detecting of DNA

Fingerprints and Genetic Relationship

Analysis in Local and Improved Rice (Oryza

sativa L.) Varieties in Iraq Using RAPD

Markers. Ph.D thesis , College of Science ,

Baghdad University , p. 166.

AL-Tamimi, Q.M.J. (2021). Induced

Molecular Variation on Two Wheat Cultivars

Using Gamma Ray.Msc thesis,university of

kufa,faculity of science,biolog departement. P.

Hunter, P. R. and Gaston, M. A. (1988).

Numerical index of discriminatory ability of

simpson's index of diversity. J. Clin. Mic.,

:2465-2466.

Graham, J. and McNicol, R. J. (1995). An

examination of the ability of RAPD markers

to determine the relationships within and

between Rubus spp. Theo. Appl. Gene. J , 90:

-1132.

AL-Tamimi, A. J. T. (2020). Genetic variation

among zeamays genotypes using start codon

targeted (scot) markers polymorphism.

SABRAO Journal of Breeding and Genetics

.52 (1) 1-16.Tahir, N. A. (2014). Genetic Variability

Evaluation among Iraqi Rice (Oryza sativa L)

Varieties using RAPD Markers and Protein

Profiling. Jordan Journal of Biological

Sciences, 7(1): 13 – 18.

Welsh, J. and McClelland, M. (1990).

Fingerprinting genomes using PCR with

arbitrary primers. Nucl. Acids Res., 18: 7213-

Williams, J.G.K.; Kubelik, A.R.; Livak, K.J.;

Rafalski, J.A. and. Tingey, S.V. (1990). DNA

polymorphisms amplified by arbitrary primers

are useful as genetic markers. Nucl. Acids

Res., 18: 6531-6535.

Collard, B.C.Y, Mackill, D.J. (2009a). Start

codon targeted (SCoT) polymorphism: a

simple, novel DNA marker technique for

generating gene-targeted markers in plants.

Plant Molecular Biology Reporter 27: 86–93.

Gorji, A. M.; Poczai, P.; Polgar, Z. and

Taller, J. (2011). Efficiency of arbitrarily

amplified dominant markers (SCoT, ISSR and

RAPD) for diagnostic fingerprinting in

tetraploid potato. Am Potato, 88: 226–237.

Vivodik, M; Zdenka, G;Zelmira ,B; Lenka, P.

(2016). Start Codon Targeted (SCOT)

polymorphism reveals genetic diversity in

European old maize (Zea mays L.) genotypes.

Potravinarstvo Scien. J. Food Ind. 10(1): 563-

Hammer, D.; Harper, A. and Ryan, P. (2001).

PAST: Paleontological Statistics. Software

package for education and data analysis.

Paleontologia Eletronica 4(1):1-9.

Abd-El-Hady, E.A.A.; Haiba, A.A.A.; AbdEl-Hamid, N.R. and Rizkalla, A. A. (2010).

Phylogenetic diversity and relationships of

some tomato varieties by electrophoretic

protein and RAPD analysis. J. Am. Sci. 6:

-441.

Ezekiel, C.N.; Nwangburuka, C.C.; Ajibade,

O.A. and Odebode, A.C. (2011). Genetic

diversity in 14 tomato (Lycopersicon

esculentum Mill.) varieties in Nigerian

markets by RAPD-PCR technique. Afr. J.

Biotechnol. 10: 4961-4967.

Abou-Deif, M. H.; Rashed, M. A.; Sallam,

M. A. A.; Mostafa, E. A. H. and Ramadan,

W.A. (2013). Characterization of Twenty

Wheat Varieties by ISSR Markers. MiddleEast Journal of Scientific Research 15 (2):

-175.

Sofalian, O.; Chaparzadeh,N. and Dolati,

M.(2008). Genetic diversity in spring wheat

landraces from northwest of Iran assessed by

ISSR markers. Notul. Bot. Hort. Agric., ClujNapoca, 37: 252-256.

Carelli, B.P; Gerald, L.T; Grazziotin,F.G.

and Echeverrigaray, S (2006). Genetic

diversity among Brazilian cultivars and

landraces of tomato Lycopersicon esculentum

Mill. re- vealed by RAPD markers. J. of

Genetic Resources and Crop Evolution

:385- 400.

Muhammad, R.W.; Qayyum, A. ; Ahmad1,

M.Q. ; Hamza , A. ; Yousaf , M. ; Ahmad ,

B.; Younas , M.; Malik , W.; Liaqat , S. and

Noor, E.(2017). Characterization of maize

genotypes for genetic diversity on the basis of

inter simple sequence repeats. Genetics and

Molecular Research J. 16 ,(1) .

Kuete V, Nguemeving JR, Beng VP, Azebaze

AG, Etoa FX, Meyer M, et al. Antimicrobial

activity of the methanolic extracts and

compounds from vismia laurentii de wild

(Guttiferae). J Ethnopharmacol 2007; 109

:372-9.

Ikigai H, Nakae T, Hara Y, Shimamura T.

Bactericidal catechins damage the lipid

bilayer. Biochim Biophys Acta 1993; 1147:

-6.

Jigna PA, Darshana JA, Sumitra CH. Efficacy

of aqueous and methanol extracts of some

medicinal plants for potential antibacterial

activity. Turk J Biol 2005; 29: 203-10.

Sivakumar T, Gajalakshmi D, Subramanian

VK, Palanisamy K. Tuber extract mediated

biosynthesis of silver nanoparticles and its

antioxidant, antibacterial activity. J Biol Sci

; 15: 68-7.

Edrah, S. M.; Meelad, F. M. and Alafid, F.

(2019). Phytochemical Study and In Vitro

Antibacterial Activity of Two Traditional

Medicinal Plants (Vinca Rosea and Vinca

Difformis) from Libya, Open Acc J of Toxicol.

(1): OAJT.MS.ID.555626 (2019)

Upadhyaya, I.; Upadhyay, A.; KollanoorJohny, A.; Darre, M.J. and Venkitanarayanan,

K. (2013). Effect of plant derived

antimicrobials on Salmonella enteritidis

adhesion to and invasion of primary chicken

oviduct epithelial cells in vitro and virulence

gene expression. Inter J of molecu scien., 14:

–10625.El-Sayed, S. Abdel-Hameed; Salih, A.

Bazaid; Mohamed, M. Shohayeb; Mortada,

M. El-Sayed and Eman, A. El-Wakil. (2012).

Phytochemical Studies and Evaluation of

Antioxidant, Anticancer and Antimicrobial

Properties of Conocarpus erectus L. Growing

inTaif, Saudi Arabia. European Journal of

Medicinal Plants. 2(2): 93-112.

Harbone, J.B. (1984). Phytochemical

Methods.A Guide to Modern Techniques of

Plant Analysis, 2nd ed.Chapman and

Hall,London.

Nibras Y. A., Baydaa A.H. (2020).

Antibacterial and antibiofilm activity of

aqueous extract and essential oil of Origanum

majorana and their activity on some

physiological parameters of blood in the male

of white rats. Indian Journal of Public Health

research and development;11(2).

Monika S, Vandana S. Catharanthus roseus a

review of potential therapeutics properties. Int

J Pure App Biosci 2013; 1: 139-42.

Kumar KC, Singhal RA, Sharma GK, Vyas

VK. Analysis of antioxidant activity of

Catharanthus roseus L. And it’s association

with habitat temperature. Asian J Exp Biol Sci

; 3: 706-13.

Koel, M.; Kuhtinskaja, M.; Vaher, M.

Extraction of bioactive compounds

from Catharanthus roseus and Vinca

minor. Sep. Purif. Technol. 2020, 252.

Foddai, M.; Maldini, M.; Addis, R.; Petretto,

G.L.; Chessa, M.; Pintore, G. Profiling of the

bioactive compounds in flowers, leaves and

roots of Vinca sardoa. Nat. Prod.

Commun. 2017, 12, 933–936.

Chen, Q.; Lu, X.; Guo, X.; Guo, Q.; Li, D.

Metabolomics Characterization of Two

Apocynaceae Plants, Catharanthus

roseus and Vinca minor, Using GC-MS and

LC-MS Methods in

Combination. Molecules 2017, 22, 997.

Alexandra, C. Cezara, Z.Augustin, C. Rahela

,C.and Marcel ,P.(2021). The Phytochemical

Analysis of Vinca L. Species Leaf Extracts Is

Correlated with the Antioxidant,

Antibacterial, and Antitumor Effects.

Molecules, 26(10

Downloads

Published

2023-02-28

Issue

Section

Articles

How to Cite

Taif Razzaq Majeed , N., NibrasYahya , A., Attyaf Jameel , T., Ahmed , A., Mohammed Subhi , M., & Qasim Mohammed Jabber , A.-T. (2023). Molecular characterization using RAPD, ISSR, SCoT markers and antibacterial activity for two Vinca (vinca roseus L.) Genotypes cultivated in Iraq. History of Medicine, 9(1). http://13.200.237.241/HOM/index.php/medicine/article/view/591