RECENT ADVANCEMENTS AND CLINICAL APPLICATIONS OF LIPOSOMAL DELIVERY SYSTEMS IN CANCER TREATMENT

Authors

  • Shikha Singh Rajiv Gandhi Institute of Pharmacy, Faculty of Pharmaceutical Science & Technology, AKS University, Satna- 485001 (MP) Author
  • Madhu Gupta Professor & Director, Rajiv Gandhi Institute of Pharmacy, Faculty of Pharmaceutical Science & Technology, AKS University, Satna (MP)-India-485001 Author
  • Dr. Surya Prakash Gupta Author

Keywords:

Liposome, Cancer, Delivery system, Combination therapy

Abstract

The primary objective of this review is to elucidate the benefits of liposomal delivery systems in cancer treatment. The review aims to explore the advantages of targeted drug delivery using liposomal nanomedicine, the spatiotemporal fate of liposomes in the body, different types of liposome-based drug delivery systems, and the potential combination of liposomal agents with other therapeutic modalities. Comprehensive review of existing literature on liposomal nanomedicine for cancer therapy. Gathering recent insights into the spatiotemporal fate of liposomes following various routes of drug administration. Exploration and analysis of different types of liposome-based drug delivery systems and their distinct advantages in cancer therapy. Integration of Combinatorial Therapies: Examination of the combination of liposomal agents with photodynamic therapy and photothermal therapy. Targeted Drug Delivery: Liposomal nanomedicine offers targeted drug delivery, enhancing the efficacy of cancer treatment while minimizing harm to healthy tissues and cells. Spatiotemporal Fate of Liposomes: Insights into the behavior and distribution of liposomes in the body following different routes of drug administration. Types of Liposome-Based Drug Delivery Systems: Identification and analysis of various liposome-based drug delivery systems, each with its unique advantages in cancer therapy. Combination Therapies: The combination of liposomal agents with photodynamic therapy and photothermal therapy has shown improved tumortargeting efficiency and therapeutic outcomes. Enhanced Therapeutic Efficacy: Highlighting the potential of liposomal nanomedicine to improve the therapeutic efficacy of cancer treatments. 

Downloads

Download data is not yet available.

References

Mitchell, M.J., Billingsley, M.M., Haley, R.M., Wechsler, M.E., Peppas, N.A., Langer,

R., 2021. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug

Discov. 20, 101–124.

Mun, E.J., Babiker, H.M., Weinberg, U., Kirson, E.D., Von Hoff, D.D., 2018.

Tumortreating fields: a fourth modality in cancer treatment. Clin. Cancer Res. 24,

–275.

Dong, S., Liu, X., Bi, Y., Wang, Y., Antony, A., Lee, D., Huntoon, K., Jeong, S., Ma,

Y., Li, X., Deng, W., Schrank, B.R., Grippin, A.J., Ha, J., Kang, M., Chang, M., Zhao,

Y., Sun, R., Sun, X., Yang, J., Chen, J., Tang, S.K., Lee, L.J., Lee, A.S., Teng, L.,

Wang, S., Teng, L., Kim, B.Y.S., Yang, Z., Jiang, W., 2023. Adaptive design of

mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer. Nat.

Commun. 14, 6610.

Xie, J., Bi, Y., Zhang, H., Dong, S., Teng, L., Lee, R.J., Yang, Z., 2020a. Cellpenetrating peptides in diagnosis and treatment of human diseases: from preclinical

research to clinical application. Front. Pharmacol. 11, 697.

You, Y., Tian, Y., Yang, Z., Shi, J., Kwak, K.J., Tong, Y., Estania, A.P., Cao, J., Hsu,

W.H., Liu, Y., Chiang, C.L., Schrank, B.R., Huntoon, K., Lee, D., Li, Z., Zhao, Y.,

Zhang, H., Gallup, T.D., Ha, J., Dong, S., Li, X., Wang, Y., Lu, W.J., Bahrani, E., Lee,

L.J., Teng, L., Jiang, W., Lan, F., Kim, B.Y.S., Lee, A.S., 2023. Intradermally

delivered mRNA-encapsulating extracellular vesicles for collagen-replacement

therapy. Nat. Biomed. Eng. 7, 887–900.

Zhang, H., Wang, S., Sun, M., Cui, Y., Xing, J., Teng, L., Xi, Z., Yang, Z., 2022a.

Exosomes as smart drug delivery vehicles for cancer immunotherapy. Front.

Immunol. 13, 1093607.

Bangham, A.D., Standish, M.M., Watkins, J.C., 1965. Diffusion of univalent ions

across the lamellae of swollen phospholipids. J. Mol. Biol. 13, 238–252.

Dong, S., Bi, Y., Sun, X., Zhao, Y., Sun, R., Hao, F., Sun, Y., Wang, Y., Li, X., Deng,

W., Liu, X., Ha, J., Teng, L., Gong, P., Xie, J., Kim, B.Y.S., Yang, Z., Jiang, W., Teng,

L., 2022. Dual-loaded liposomes tagged with hyaluronic acid have synergistic effects

in triple-negative breast cancer. Small 18, e2107690.

Shah, S., Dhawan, V., Holm, R., Nagarsenker, M.S., Perrie, Y., 2020. Liposomes:

advancements and innovation in the manufacturing process. Adv. Drug. Deliv. Rev.

-155, 102–122.

Zhang, T., Xu, X., Pan, Y., Yang, H., Han, J., Liu, J., Liu, W., 2023. Specific surface

modification of liposomes for gut targeting of food bioactive agents. Compr. Rev.

Food Sci. Food Saf. 22, 3685–3706.

Muthu, M.S., Singh, S., 2009. Targeted nanomedicines: effective treatment modalities

for cancer, AIDS and brain disorders. Nanomedicine 4, 105–118.

Johnson, S.M., Bangham, A.D., 1969. Potassium permeability of single compartment

liposomes with and without valinomycin. Biochim. Biophys. Acta 193, 82–91.

Gregoriadis, G., Ryman, B.E., 1971. Liposomes as carriers of enzymes or drugs: a

new approach to the treatment of storage diseases. Biochem. J. 124, 58.

Juliano, R.L., Stamp, D., 1975. The effect of particle size and charge on the clearance

rates of liposomes and liposome encapsulated drugs. Biochem. Biophys. Res.

Commun. 63, 651–658.

Gregoriadis, G., 1976a. The carrier potential of liposomes in biology and medicine

(first of two parts). N. Engl. J. Med. 295, 704–710.

Gregoriadis, G., 1976b. The carrier potential of liposomes in biology and medicine

(second of two parts). N. Engl. J. Med. 295, 765–770.

Mezei, M., Gulasekharam, V., 1980. Liposomes–a selective drug delivery system for

the topical route of administration. Lotion dosage form. Life Sci. 26, 1473–1477.

Ganapathi, R., Krishan, A., Wodinsky, I., Zubrod, C.G., Lesko, L.J., 1980. Effect of

cholesterol content on antitumor activity and toxicity of liposome-encapsulated 1-

beta-D-arabinofuranosylcytosine in vivo. Cancer Res. 40, 630–633.

Gabizon, A., Papahadjopoulos, D., 1988. Liposome formulations with prolonged

circulation time in blood and enhanced uptake by tumors. Proc. Natl. Acad. Sci. USA.

, 6949–6953.

Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.W., Zarghami, N.,

Hanifehpour, Y., Samiei, M., Kouhi, M., Nejati-Koshki, K., 2013. Liposome:

classification, preparation, and applications. Nanoscale Res. Lett. 8, 102.

Moss, K.H., Popova, P., Hadrup, S.R., Astakhova, K., Taskova, M., 2019. Lipid

nanoparticles for delivery of therapeutic RNA oligonucleotides. Mol. Pharm. 16,

–2277.

Kulkarni, J.A., Cullis, P.R., van der Meel, R., 2018. Lipid nanoparticles enabling gene

therapies: from concepts to clinical utility. Nucleic Acid Ther. 28, 146–157.

Patel, S., Ashwanikumar, N., Robinson, E., DuRoss, A., Sun, C., Murphy-Benenato,

K.E., Mihai, C., Almarsson, O., ¨ Sahay, G., 2017. Boosting intracellular delivery of

lipid nanoparticle-encapsulated mRNA. Nano Lett. 17, 5711–5718.

Hou, X., Zaks, T., Langer, R., Dong, Y., 2021. Lipid nanoparticles for mRNA delivery.

Nat. Rev. Mater. 6, 1078–1094.

Tenchov, R., Bird, R., Curtze, A.E., Zhou, Q., 2021. Lipid nanoparticles-from

liposomes to mRNA vaccine delivery, a landscape of research diversity and

advancement. ACS Nano 15, 16982–17015.

Menina, S., Eisenbeis, J., Kamal, M.A.M., Koch, M., Bischoff, M., Gordon, S.,

Loretz, B., Lehr, C.M., 2019. Bioinspired liposomes for oral delivery of colistin to combat intracellular infections by Salmonella enterica. Adv. Healthc. Mater. 8,

e1900564.

Semyachkina-Glushkovskaya, O., Shirokov, A., Blokhina, I., Telnova, V.,

Vodovozova, E., Alekseeva, A., Boldyrev, I., Fedosov, I., Dubrovsky, A., Khorovodov,

A., Terskov, A., Evsukova, A., Elovenko, D., Adushkina, V., Tzoy, M., Agranovich, I.,

Kurths, J., Rafailov, E., 2022. Intranasal delivery of liposomes to glioblastoma by

photostimulation of the lymphatic system. Pharmaceutics 15.

Jose, A., Labala, S., Venuganti, V.V., 2017. Co-delivery of curcumin and STAT3

siRNA using deformable cationic liposomes to treat skin cancer. J. Drug Target 25,

–341.

Keshavarz, A., Alobaida, A., McMurtry, I.F., Nozik-Grayck, E., Stenmark, K.R.,

Ahsan, F., 2019. CAR, a homing peptide, prolongs pulmonary preferential

vasodilation by increasing pulmonary retention and reducing systemic absorption of

liposomal fasudil. Mol Pharm 16, 3414–3429.

Si, Y., Tian, Q., Zhao, F., Kelly, S.H., Shores, L.S., Camacho, D.F., Sperling, A.I.,

Andrade, M.S., Collier, J.H., Chong, A.S., 2020. Adjuvant-free nanofiber vaccine

induces in situ lung dendritic cell activation and T(H)17 responses. Sci. Adv. 6,

eaba0995.

van der Meel, R., Sulheim, E., Shi, Y., Kiessling, F., Mulder, W.J.M., Lammers, T.,

Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017.

Meel, M.H., Guill´en Navarro, M., de Gooijer, M.C., Metselaar, D.S., Waranecki, P.,

Breur, M., Lagerweij, T., Wedekind, L.E., Koster, J., van de Wetering, M.D.,

Schouten-van Meeteren, N., Aronica, E., van Tellingen, O., Bugiani, M., Phoenix, T.

N., Kaspers, G.J.L., Hulleman, E., 2020. MEK/MELK inhibition and blood-brain

barrier deficiencies in atypical teratoid/rhabdoid tumors. Neuro. Oncol. 22, 58–69.

Matsumura, Y., Maeda, H., 1986. A new concept for macromolecular therapeutics in

cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the

antitumor agent smancs. Cancer Res. 46, 6387–6392.

Zhao, Z., Li, D., Wu, Z., Wang, Q., Ma, Z., Zhang, C., 2020. Research progress and

prospect of nanoplatforms for treatment of oral cancer. Front. Pharmacol. 11, 616101.

Foroozandeh, P., Aziz, A.A., 2018. Insight into cellular uptake and intracellular

trafficking of nanoparticles. Nanoscale Res. Lett. 13, 339.

Mylvaganam, S., Freeman, S.A., Grinstein, S., 2021. The cytoskeleton in

phagocytosis and macropinocytosis. Curr. Biol. 31, R619–r632.

Desai, A.S., Hunter, M.R., Kapustin, A.N., 2019. Using macropinocytosis for

intracellular delivery of therapeutic nucleic acids to tumour cells. Philos. Trans. R.

Soc. Lond. B 374, 20180156.

Gandek, T.B., van der Koog, L., Nagelkerke, A., 2023. A comparison of cellular

uptake mechanisms, delivery efficacy, and intracellular fate between liposomes and

extracellular vesicles. Adv. Healthc. Mater. 12, e2300319.

Liu, C., Zhang, L., Zhu, W., Guo, R., Sun, H., Chen, X., Deng, N., 2020a. Barriers

and strategies of cationic liposomes for cancer gene therapy. Mol. Ther. Methods Clin.

Dev. 18, 751–764.

Popov, L.D., 2022. Deciphering the relationship between caveolae-mediated

intracellular transport and signalling events. Cell Signal. 97, 110399.

Matthaeus, C., Taraska, J.W., 2020. Energy and dynamics of caveolae trafficking.

Front. Cell Dev. Biol. 8, 614472.

Csiszar, ´ A., Hersch, N., Dieluweit, S., Biehl, R., Merkel, R., Hoffmann, B., 2010.

Novel fusogenic liposomes for fluorescent cell labeling and membrane modification.

Bioconjug. Chem. 21, 537–543.

Tang, J., Rakshit, M., Chua, H.M., Darwitan, A., Nguyen, L.T.H., Muktabar, A.,

Venkatraman, S., Ng, K.W., 2021. Liposome interaction with macrophages and foam

cells for atherosclerosis treatment: effects of size, surface charge and lipid

composition. Nanotechnology 32.

Benne, N., Leboux, R.J.T., Glandrup, M., van Duijn, J., Lozano Vigario, F., Neustrup,

M. A., Romeijn, S., Galli, F., Kuiper, J., Jiskoot, W., Slütter, B., 2020. Atomic force

microscopy measurements of anionic liposomes reveal the effect of liposomal rigidity

on antigen-specific regulatory T cell responses. J. Control Release 318, 246–255.

Chen, J., Xu, Z., Liu, Y., Mei, A., Wang, X., Shi, Q., 2023. Cellular absorption of

polystyrene nanoplastics with different surface functionalization and the toxicity to

RAW264.7 macrophage cells. Ecotoxicol. Environ. Saf. 252, 114574. Chen, L., Zhou,

S.F., Su, L., Song, J., 2019. Gas-mediated cancer bioimaging and therapy. ACS Nano

, 10887–10917.

Chen, C.K., Liao, J., Li, M.S., Khoo, B.L., 2020. Urine biopsy technologies: cancer

and beyond. Theranostics 10, 7872–7888.

Li, S.D., Huang, L., 2008. Pharmacokinetics and biodistribution of nanoparticles.

Mol. Pharm 5, 496–504.

Park, J.Y., Song, M.G., Kim, W.H., Kim, K.W., Lodhi, N.A., Choi, J.Y., Kim, Y.J.,

Kim, J.Y., Chung, H., Oh, C., Lee, Y.S., Kang, K.W., Im, H.J., Seok, S.H., Lee, D.S.,

Kim, E.E., Jeong, J.M., 2019. Versatile and finely tuned albumin nanoplatform based

on click chemistry. Theranostics 9, 3398–3409.

Tran, B.H., Yu, Y., Chang, L., Tan, B., Jia, W., Xiong, Y., Dai, T., Zhong, R., Zhang,

W., Le, V.M., Rose, P., Wang, Z., Mao, Y., Zhu, Y.Z., 2019. A novel liposomal spropargylcysteine: a sustained release of hydrogen sulfide reducing myocardial

fibrosis via TGF-β1/Smad pathway. Int. J. Nanomed. 14, 10061–10077.

Zheng, T., Wang, W., Wu, F., Zhang, M., Shen, J., Sun, Y., 2019. Zwitterionic

polymergatedAu@TiO(2) core-shell nanoparticles for imaging-guided combined

cancer therapy. Theranostics 9, 5035–5048.

Colino, C.I., Lanao, J.M., Gutierrez-Millan, C., 2020. Targeting of hepatic

macrophages by therapeutic nanoparticles. Front. Immunol. 11, 218.

Large, D.E., Abdelmessih, R.G., Fink, E.A., Auguste, D.T., 2021. Liposome

composition in drug delivery design, synthesis, characterization, and clinical

application. Adv. Drug. Deliv. Rev. 176, 113851.

Wilhelm, S., Tavares, A.J., Dai, Q., Ohta, S., Audet, J., Dvorak, H.F., Chan, W.C.W.,

Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1.

Liu, M., Li, J., Zhao, D., Yan, N., Zhang, H., Liu, M., Tang, X., Hu, Y., Ding, J.,

Zhang, N., Liu, X., Deng, Y., Song, Y., Zhao, X., 2022. Branched PEG-modification:

a new strategy for nanocarriers to evade of the accelerated blood clearance

phenomenon and enhance anti-tumor efficacy. Biomaterials 283, 121415.

Børresen, B., Hansen, A.E., Fliedner, F.P., Henriksen, J.R., Elema, D.R.,

BrandtLarsen, M., Kristensen, L.K., Kristensen, A.T., Andresen, T.L., Kjær, A., 2020.

Noninvasive molecular imaging of the enhanced permeability and retention effect by

(64)Cu-liposomes: in vivo correlations with (68)Ga-RGD, fluid pressure, diffusivity

and (18)F-FDG. Int. J. Nanomed. 15, 8571–8581.

Wang, Z., Ye, Q., Yu, S., Akhavan, B., 2023. Poly Ethylene Glycol (PEG)-based

hydrogels for drug delivery in cancer therapy: a comprehensive review. Adv. Healthc.

Mater. 12, e2300105.

Barenholz, Y., 2012. Doxil®–the first FDA-approved nano-drug: lessons learned. J.

Control Release 160, 117–134.

Gabizon, A., Shmeeda, H., Barenholz, Y., 2003. Pharmacokinetics of pegylated

liposomal Doxorubicin: review of animal and human studies. Clin. Pharmacokinet.

, 419–436.

O’Brien, M.E., Wigler, N., Inbar, M., Rosso, R., Grischke, E., Santoro, A., Catane, R.,

Kieback, D.G., Tomczak, P., Ackland, S.P., Orlandi, F., Mellars, L., Alland, L.,

Tendler, C., 2004. Reduced cardiotoxicity and comparable efficacy in a phase III trial

of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional

doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol. 15, 440–

Ding, H., Tan, P., Fu, S., Tian, X., Zhang, H., Ma, X., Gu, Z., Luo, K., 2022.

Preparation and application of pH-responsive drug delivery systems. J. Control

Release 348, 206–238.

Abri Aghdam, M., Bagheri, R., Mosafer, J., Baradaran, B., Hashemzaei, M.,

Baghbanzadeh, A., de la Guardia, M., Mokhtarzadeh, A., 2019. Recent advances on

thermosensitive and pH-sensitive liposomes employed in controlled release. J.

Control Release 315, 1–22.

Buch, P.J., Chai, Y., Goluch, E.D., 2019. Treating polymicrobial infections in chronic

diabetic wounds. Clin. Microbiol. Rev. 32.

Fan, Y., Chen, C., Huang, Y., Zhang, F., Lin, G., 2017. Study of the pH-sensitive

mechanism of tumor-targeting liposomes. Colloids Surf. B 151, 19–25. Ferreira, F.,

Luxardi, G., Reid, B., Ma, L., Raghunathan, V., Zhao, M., 2020. Real-time

physiological measurements of oxygen using a non-invasive self-referencing optical

fiber microsensor. Nat. Protoc. 15, 207–235.

Rehman, F.U., Al-Waeel, M., Naz, S.S., Shah, K.U., 2020. Anticancer therapeutics: a

brief account on wide refinements. Am. J. Cancer Res. 10, 3599–3621.

Lee, S.Y., Fiorentini, G., Szasz, A.M., Szigeti, G., Szasz, A., Minnaar, C.A., 2020.

Quo vadis oncological hyperthermia (2020)? Front. Oncol. 10, 1690.

Pham, P.T.T., Le, X.T., Kim, H., Kim, H.K., Lee, E.S., Oh, K.T., Choi, H.G., Youn,

Y.S., 2020. Indocyanine green and curcumin co-loaded nano-fireball-like albumin

nanoparticles based on near-infrared-induced hyperthermia for tumor ablation. Int. J.

Nanomed. 15, 6469–6484.

Scutigliani, E.M., Liang, Y., Crezee, H., Kanaar, R., Krawczyk, P.M., 2021.

Modulating the heat stress response to improve hyperthermia-based anticancer

treatments. Cancers 13.

Jin, X., Lu, X., Zhang, Z., Lv, H., 2020. Indocyanine green-parthenolide

thermosensitive liposome combination treatment for triple-negative breast cancer. Int.

J. Nanomed. 15, 3193–3206.

Needham, D., Dewhirst, M.W., 2001. The development and testing of a new

temperaturesensitive drug delivery system for the treatment of solid tumors. Adv.

Drug. Deliv. Rev. 53, 285–305.

Boca Bene, I., Ciurea, A.I., Ciortea, C.A., Dudea, S.M., 2021. Pros and cons for

Automated Breast Ultrasound (ABUS): a narrative review. J. Pers. Med. 11. Borocci,

S., Bozzuto, G., Bombelli, C., Ceccacci, F., Formisano, G., Stringaro, A., Molinari,

A., Mancini, G., 2021. How stereochemistry of lipid components can affect lipid

organization and the route of liposome internalization into cells. Nanoscale 13,

–11993.

Edwards, I.A., De Carlo, F., Sitta, J., Varner, W., Howard, C.M., Claudio, P.P., 2023.

Enhancing targeted therapy in breast cancer by ultrasound-responsive nanocarriers.

Int. J. Mol. Sci. 24.

AlSawaftah, N.M., Paul, V., Kosaji, D., Khabbaz, L., Awad, N.S., Husseini, G.A.,

Ultrasound-sensitive cRGD-modified liposomes as a novel drug delivery

system. Artif. Cells Nanomed. Biotechnol. 50, 111–120.

Ashrafizadeh, M., Delfi, M., Zarrabi, A., Bigham, A., Sharifi, E., Rabiee, N.,

PaivaSantos, A.C., Kumar, A.P., Tan, S.C., Hushmandi, K., Ren, J., Zare, E.N.,

Makvandi, P., 2022. Stimuli-responsive liposomal nanoformulations in cancer

therapy: pre-clinical & clinical approaches. J. Control Release 351, 50–80.

Kartha, S., Yan, L., Ita, M.E., Amirshaghaghi, A., Luo, L., Wei, Y., Tsourkas, A.,

Winkelstein, B.A., Cheng, Z., 2020. Phospholipase A(2) inhibitor-loaded

phospholipid micelles abolish neuropathic pain. ACS Nano 14, 8103–8115.

Gao, A., Hu, X.L., Saeed, M., Chen, B.F., Li, Y.P., Yu, H.J., 2019. Overview of recent

advances in liposomal nanoparticle-based cancer immunotherapy. Acta Pharmacol.

Sin. 40, 1129–1137.

Rahman, H.S., Othman, H.H., Hammadi, N.I., Yeap, S.K., Amin, K.M., Abdul Samad,

N., Alitheen, N.B., 2020. Novel drug delivery systems for loading of natural plant

extracts and their biomedical applications. Int. J. Nanomed. 15, 2439–2483.

Men, W., Zhu, P., Dong, S., Liu, W., Zhou, K., Bai, Y., Liu, X., Gong, S., Zhang, S.,

Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled

release with improved therapeutic efficacy in vivo. Drug Deliv. 27, 180–190.

Thomas, O.S., Weber, W., 2019. Overcoming physiological barriers to nanoparticle

delivery-are we there yet? Front. Bioeng. Biotechnol. 7, 415.

Xu, S., Cui, F., Huang, D., Zhang, D., Zhu, A., Sun, X., Cao, Y., Ding, S., Wang, Y.,

Gao, E., Zhang, F., 2019. PD-L1 monoclonal antibody-conjugated nanoparticles

enhance drug delivery level and chemotherapy efficacy in gastric cancer cells. Int. J.

Nanomed. 14, 17–32.

Maffei, M.E., 2022. Magnetic fields and cancer: epidemiology, cellular biology, and

theranostics. Int. J. Mol. Sci. 23.

de Maar, J.S., Suelmann, B.B.M., Braat, M., van Diest, P.J., Vaessen, H.H.B.,

Witkamp, A. J., Linn, S.C., Moonen, C.T.W., van der Wall, E., Deckers, R., 2020.

Phase I feasibility study of Magnetic Resonance guided High Intensity Focused Ultrasound-induced hyperthermia, Lyso-Thermosensitive Liposomal Doxorubicin and

cyclophosphamide in de novo stage IV breast cancer patients: study protocol of the iGO study. BMJ Open 10, e040162.

Zhang, F., Parayath, N.N., Ene, C.I., Stephan, S.B., Koehne, A.L., Coon, M.E.,

Holland, E. C., Stephan, M.T., 2019. Genetic programming of macrophages to perform

antitumor functions using targeted mRNA nanocarriers. Nat. Commun. 10, 3974.

Chakraborty, S., Ozkan, A., Rylander, M.N., Woodward, W.A., Vlachos, P., 2019.

Mixture theory modeling for characterizing solute transport in breast tumor tissues. J.

Biol. Eng. 13, 46.

Hu, Y., Ran, M., Wang, B., Lin, Y., Cheng, Y., Zheng, S., 2020b. Co-delivery of

docetaxel and curcumin via nanomicelles for enhancing anti-ovarian cancer treatment.

Int. J. Nanomed. 15, 9703–9715.

Gallego-Jara, J., Lozano-Terol, G., Sola-Martínez, R.A., C´ anovas-Díaz, M., de Diego

Puente, T., 2020. A compressive review about Taxol(®): history and future challenges.

Molecules 25.

Wang, F., Porter, M., Konstantopoulos, A., Zhang, P., Cui, H., 2017. Preclinical

development of drug delivery systems for paclitaxel-based cancer chemotherapy. J.

Control Release 267, 100–118.

Dellapasqua, S., Trillo Aliaga, P., Munzone, E., Bagnardi, V., Pagan, E., Montagna, E.,

Cancello, G., Ghisini, R., Sangalli, C., Negri, M., Mazza, M., Iorfida, M., Cardillo, A.,

Sciandivasci, A., Bianco, N., De Maio, A.P., Milano, M., Campennì, G.M., Sansonno,

L., Viale, G., Morra, A., Leonardi, M.C., Galimberti, V., Veronesi, P., Colleoni, M.,

Pegylated liposomal doxorubicin (Caelyx(®)) as adjuvant treatment in earlystage luminal B-like breast cancer: a feasibility phase II trial. Curr. Oncol. 28, 5167–

Franco, Y.L., Vaidya, T.R., Ait-Oudhia, S., 2018. Anticancer and cardio-protective

effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer 10,

–141.

Dong, M., Luo, L., Ying, X., Lu, X., Shen, J., Jiang, Z., Wang, L., 2018. Comparable

efficacy and less toxicity of pegylated liposomal doxorubicin versus epirubicin for

neoadjuvant chemotherapy of breast cancer: a case-control study. Onco Targets Ther.

, 4247–4252.

Wollina, U., Dummer, R., Brockmeyer, N.H., Konrad, H., Busch, J.O., Kaatz, M.,

Knopf, B., Koch, H.J., Hauschild, A., 2003. Multicenter study of pegylated liposomal

doxorubicin in patients with cutaneous T-cell lymphoma. Cancer 98, 993–1001.

Moghassemi, S., Dadashzadeh, A., Azevedo, R.B., Feron, O., Amorim, C.A., 2021.

Photodynamic cancer therapy using liposomes as an advanced vesicular

photosensitizer delivery system. J. Control Release 339, 75–90.

Pramod Kumar, E.K., Um, W., Park, J.H., 2020. Recent developments in pathological

pHresponsive polymeric nanobiosensors for cancer theranostics. Front. Bioeng.

Biotechnol. 8, 601586.

Cheng, X., Gao, J., Ding, Y., Lu, Y., Wei, Q., Cui, D., Fan, J., Li, X., Zhu, E., Lu, Y.,

Wu, Q., Li, L., Huang, W., 2021. Multi-functional liposome: a powerful theranostic

nanoplatform enhancing photodynamic therapy. Adv. Sci. 8, e2100876.

Zhu, Y., Yu, F., Tan, Y., Wen, L., Li, Y., Yuan, H., Hu, F., 2020. Guiding appropriate

timing of laser irradiation by polymeric micelles for maximizing chemophotodynamic

therapy. Int. J. Nanomed. 15, 6531–6543.

Albarqi, H.A., Wong, L.H., Schumann, C., Sabei, F.Y., Korzun, T., Li, X., Hansen,

M.N., Dhagat, P., Moses, A.S., Taratula, O., Taratula, O., 2019. Biocompatible

nanoclusters with high heating efficiency for systemically delivered magnetic

hyperthermia. ACS Nano 13, 6383–6395.

Li, X., Lovell, J.F., Yoon, J., Chen, X., 2020. Clinical development and potential of

photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–

Forbes, N.A., Zasadzinski, J.A., 2010. Localized photothermal heating of temperature

sensitive liposomes. Biophys. J. 98, 274A.

You, J., Zhang, P.Z., Hu, F.Q., Du, Y.Z., Yuan, H., Zhu, J., Wang, Z.H., Zhou, J.L., Li,

C., 2014. Near-infrared light-sensitive liposomes for the enhanced photothermal tumor

treatment by the combination with chemotherapy. Pharm. Res. 31, 554–565.

Jiang, X., Zhang, B., Zhou, Z., Meng, L., Sun, Z., Xu, Y., Xu, Q., Yuan, A., Yu, L.,

Qian, H., Wu, J., Hu, Y., Liu, B., 2017. Enhancement of radiotherapy efficacy by

pleiotropic liposomes encapsulated paclitaxel and perfluorotributylamine. Drug Deliv.

, 1419–1428.

Sadeghi, N., Kok, R.J., Bos, C., Zandvliet, M., Geerts, W.J.C., Storm, G., Moonen,

C.T.W., Lammers, T., Deckers, R., 2019. Hyperthermia-triggered release of hypoxic

cell radiosensitizers from temperature-sensitive liposomes improves radiotherapy

efficacy in vitro. Nanotechnology 30, 264001.

Xie, M., Ding, X., Chen, A., Xiao, H., Wang, X., Wang, Y., Zhang, H., 2020b.

Efficacy and safety of image-guided intensity-modulated radiation therapy and

volumetric modulated arc therapy combined with paclitaxel liposomes and cisplatin

for locally advanced stage IIB-IIIB cervical cancer: a retrospective study at a single

center. Med. Sci. Monit. 26, e927563.

Liu, G., Xu, X., Jiang, L., Ji, H., Zhu, F., Jin, B., Han, J., Dong, X., Yang, F., Li, B.,

b. Targeted antitumor mechanism of C-PC/CMC-CD55sp nanospheres in HeLa

cervical cancer cells. Front. Pharmacol. 11, 906.

Park, H., Saravanakumar, G., Kim, J., Lim, J., Kim, W.J., 2021. Tumor

microenvironment sensitive nanocarriers for bioimaging and therapeutics. Adv.

Healthc. Mater. 10, e2000834.

Guo, X., Liu, J., Jiang, L., Gong, W., Wu, H., He, Q., 2021. Sulourea-coordinated Pd

nanocubes for NIR-responsive photothermal/H(2)S therapy of cancer. J.

Nanobiotechnol. 19, 321.

Pascale, R.M., Calvisi, D.F., Simile, M.M., Feo, C.F., Feo, F., 2020. The

warburg effect 97 years after its discovery. Cancers 12.

Zhou, G., Chen, Y., Chen, W., Wu, H., Yu, Y., Sun, C., Hu, B., Liu, Y., 2023. Renal

clearable catalytic 2D Au-porphyrin coordination polymer augmented photothermalgas

synergistic cancer therapy. Small 19, e2206749.

Wang, S., Guo, X., Xiu, W., Liu, Y., Ren, L., Xiao, H., Yang, F., Gao, Y., Xu, C.,

Wang, L., 2020. Accelerating thrombolysis using a precision and clot-penetrating drug

delivery strategy by nanoparticle-shelled microbubbles. Sci. Adv. 6, eaaz8204.

Lee, S.Y., Rim, Y., McPherson, D.D., Huang, S.L., Kim, H., 2014. A novel liposomal

nanomedicine for nitric oxide delivery and breast cancer treatment. Biomed. Mater.

Eng. 24, 61–67.

Yang, M., Li, J., Gu, P., Fan, X., 2021. The application of nanoparticles in cancer

immunotherapy: targeting tumor microenvironment. Bioact. Mater. 6, 1973–1987.

Lu, Y., Huntoon, K., Lee, D., Wang, Y., Ha, J., Qie, Y., Li, X., Schrank, B.R., Dong,

S., Gallup, T.D., Kang, M., Zhao, H., An, Y., Yang, Z., Li, J., Kim, B.Y.S., Jiang, W.,

Immunological conversion of solid tumours using a bispecific nanobioconjugate

for cancer immunotherapy. Nat. Nanotechnol. 17, 1332–1341.

Guo, J., Yu, Z., Das, M., Huang, L., 2020. Nano codelivery of oxaliplatin and folinic

acid achieves synergistic chemo-immunotherapy with 5-fluorouracil for colorectal

cancer and liver metastasis. ACS Nano 14, 5075–5089.

Rios-Doria, J., Durham, N., Wetzel, L., Rothstein, R., Chesebrough, J., Holoweckyj,

N., Zhao, W., Leow, C.C., Hollingsworth, R., 2015. Doxil synergizes with cancer

immunotherapies to enhance antitumor responses in syngeneic mouse models.

Neoplasia 17, 661–670.

Shi, J., Kantoff, P.W., Wooster, R., Farokhzad, O.C., 2017. Cancer nanomedicine:

progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37. Shi, Y., Lammers,

T., 2019. Combining Nanomedicine and Immunotherapy. Acc. Chem. Res. 52, 1543–

Pei, Z., Chen, S., Ding, L., Liu, J., Cui, X., Li, F., Qiu, F., 2022. Current perspectives

and trend of nanomedicine in cancer: a review and bibliometric analysis. J. Control

Release 352, 211–241.

Wu, L.P., Wang, D., Li, Z., 2020. Grand challenges in nanomedicine. Mater. Sci. Eng.

C 106, 110302.

Etter, E.L., Mei, K.C., Nguyen, J., 2021. Delivering more for less: nanosized,

minimalcarrier and pharmacoactive drug delivery systems. Adv. Drug. Deliv. Rev. 179,

Ferreira Soares, D.C., Domingues, S.C., Viana, D.B., Tebaldi, M.L., 2020. Polymerhybrid nanoparticles: current advances in biomedical applications. Biomed.

Pharmacother. 131, 110695.

Dogan, E., Kisim, A., Bati-Ayaz, G., Kubicek, G.J., Pesen-Okvur, D., Miri, A.K.,

Cancer stem cells in tumormodeling: challenges and future directions. Adv.

Nanobiomed. Res. 1.

Guillen, K.P., Fujita, M., Butterfield, A.J., Scherer, S.D., Bailey, M.H., Chu, Z.,

DeRose, Y. S., Zhao, L., Cortes-Sanchez, E., Yang, C.H., Toner, J., Wang, G., Qiao, Y.,

Huang, X., Greenland, J.A., Vahrenkamp, J.M., Lum, D.H., Factor, R.E., Nelson, E.W.,

Matsen, C.B., Poretta, J.M., Rosenthal, R., Beck, A.C., Buys, S.S., Vaklavas, C., Ward,

J.H., Jensen, R.L., Jones, K.B., Li, Z., Oesterreich, S., Dobrolecki, L.E., Pathi, S. S.,

Woo, X.Y., Berrett, K.C., Wadsworth, M.E., Chuang, J.H., Lewis, M.T., Marth, G. T.,

Gertz, J., Varley, K.E., Welm, B.E., Welm, A.L., 2022. A human breast cancerderived

xenograft and organoid platform for drug discovery and precision oncology. Nat

Cancer 3, 232–250.

Hai, J., Zhang, H., Zhou, J., Wu, Z., Chen, T., Papadopoulos, E., Dowling, C.M.,

Pyon, V., Pan, Y., Liu, J.B., Bronson, R.T., Silver, H., Lizotte, P.H., Deng, J.,

Campbell, J.D., Sholl, L.M., Ng, C., Tsao, M.S., Thakurdin, C., Bass, A.J., Wong, K.K., 2020. Generation of genetically engineered mouse lung organoid models for

squamous cell lung cancers allows for the study of combinatorial immunotherapy.

Clin. Cancer Res. 26, 3431–3442.

Downloads

Published

2022-02-28

Issue

Section

Articles

How to Cite

Singh, S., Gupta, M., & Prakash Gupta, S. (2022). RECENT ADVANCEMENTS AND CLINICAL APPLICATIONS OF LIPOSOMAL DELIVERY SYSTEMS IN CANCER TREATMENT. History of Medicine, 8(1). http://13.200.237.241/HOM/index.php/medicine/article/view/357