A selective fluorescent chemosensor based on chromone hydrazone ligand for Zinc ions

Authors

  • Wan Mohd Hilmey W Mohd Arifin Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia Author
  • Yusnita Juahir Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia Author
  • Noorshida Mohd Ali Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia Author
  • Norlaili Abu Bakar Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia Author
  • Suzaliza Mustafar Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia Author
  • Mohamad Syahrizal Ahmad Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia Author
  • Hafsah Taha Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia Author
  • Faridah Lisa Supian Department of Physic, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia Author
  • Uwaisulqarni M. Osman School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia Author

Keywords:

Chromone hydrazone, Zn2, fluorescent probe, ONS donor

Abstract

Chromone hydrazone ligand namely AFCTSC was synthesised and fully characterised using spectroscopy method of FT-IR, UV-Vis, 13C & 1H NMR. The fluorescence emission of free AFCTSC ligand was observed to be weak at 460 nm. The ligand showed high selectivity to Zn2+ by giving remarkable red shift of the emission to 505 nm, while other metal ions such as Ca2+, Co2+, Cu2+, Fe2+, Mn2+ and Ni2+ quenched the fluorescence intensity of the ligand. Furthermore, Zn2+ addition into AFCTSC solution caused fluorescent colour change from blue to green when the solution is illuminated with a UV lamp (λ=365nm). The limit of detection obtained was 4.5×10-7 M making AFCTSC a promising fluorescent probe that could be an alternative to existing analytical methods for determination of Zn2+. The binding study revealed each molecule of AFCTSC was coordinated to Zn2+ in mononegative tridentate manner via ONS donor atoms.

Downloads

Download data is not yet available.

References

Hosseini, M., et al., A turn-on fluorescent sensor for Zn2+ based on new Schiff's base derivative in aqueous media. Sensors and Actuators B: Chemical, 2014. 198: p. 411-415.

Li, C.-r., S.-l. Li, and Z.-y. Yang, A chromone-derived Schiff-base as Al 3+“turn-on” fluorescent probe based on photoinduced electron-transfer (PET) and C N isomerization. Tetrahedron Letters, 2016. 57(44): p. 4898-4904.

Wu, S.-P., T.-H. Wang, and S.-R. Liu, A highly selective turn-on fluorescent chemosensor for copper(II) ion. Tetrahedron, 2010. 66(51): p. 9655-9658.DOI: https://doi.org/10.1016/j.tet.2010.10.054.

Ge, F., et al., A new fluorescent and colorimetric chemosensor for Cu (II) based on rhodamine hydrazone and ferrocene unit. Sensors and Actuators B: Chemical, 2013. 181: p. 215-220.

Quang, D.T., et al., A new fluorescent chemosensor for Hg2+ in aqueous solution. Luminescence, 2013. 28(2): p. 222-225.

Choi, J.Y., D. Kim, and J. Yoon, A highly selective “turn-on” fluorescent chemosensor based on hydroxy pyrene–hydrazone derivative for Zn2+. Dyes and Pigments, 2013. 96(1): p. 176-179.DOI: https://doi.org/10.1016/j.dyepig.2012.08.009.

Lv, Y., et al., A sensitive ratiometric fluorescent sensor for zinc (II) with high selectivity. Sensors, 2013. 13(3): p. 3131-3141.

Liu, Z.-c., et al., A Highly Selective Turn-On Fluorescent Chemosensor for Zinc Ion in Aqueous Media. Journal of fluorescence, 2013. 23(6): p. 1239-1245.

Ghosh, C.K., Chemistry of 4-Oxo-4H-[1]benzopyran-3-carboxaldehyde. Journal of Heterocyclic Chemistry, 1983. 20(6): p. 1437-1445.DOI: 10.1002/jhet.5570200601.

Kavitha, P., M. Saritha, and K. Laxma Reddy, Synthesis, structural characterization, fluorescence, antimicrobial, antioxidant and DNA cleavage studies of Cu(II) complexes of formyl chromone Schiff bases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013. 102: p. 159- 168.DOI: https://doi.org/10.1016/j.saa.2012.10.037.

Osowole, A.A., Synthesis, spectroscopic characterization, in-vitro antibacterial and antiproliferative activities of some metal(II) complexes of 3,4-dihydronaphthalen-1(2H)-one Schiff base. EXCLI journal, 2012. 11: p. 338-345.

Wang, G.-q., et al., A turn-on fluorescent sensor for highly selective recognition of Mg2+ based on new Schiff’s base derivative. Journal of Photochemistry and Photobiology A: Chemistry, 2016. 314: p. 29-34.DOI: https://doi.org/10.1016/j.jphotochem.2015.08.005.

Arifin, W.M.H., et al., Synthesis and characterization of chromone-based ligand and its fluorescence property towards Zn2+. IOP Conference Series: Materials Science and Engineering, 2018. 440: p. 012015.DOI: 10.1088/1757-899x/440/1/012015.

Xie, G., et al., A Highly Selective Fluorescent and Colorimetric Chemosensor for ZnII and Its Application in Cell Imaging. European Journal of Inorganic Chemistry, 2011. 2012(2): p. 327- 332.DOI: 10.1002/ejic.201100804.

Ajayaghosh, A., P. Carol, and S. Sreejith, A Ratiometric Fluorescence Probe for Selective Visual Sensing of Zn2+. Journal of the American Chemical Society, 2005. 127(43): p. 14962-14963.DOI: 10.1021/ja054149s.

Vallee, B.L. and K.H. Falchuk, The biochemical basis of zinc physiology. Physiological Reviews, 1993. 73(1): p. 79-118.DOI: 10.1152/physrev.1993.73.1.79.

Frederickson, C.J., J.-Y. Koh, and A.I. Bush, The neurobiology of zinc in health and disease. Nature Reviews Neuroscience, 2005. 6: p. 449.DOI: 10.1038/nrn1671.

McRae, R., et al., In Situ Imaging of Metals in Cells and Tissues. Chemical Reviews, 2009. 109(10): p. 4780-4827.DOI: 10.1021/cr900223a.

Nazir, R., et al., Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. Journal of Pharmaceutical Sciences and Research, 2015. 7(3): p. 89.

Ibrahim, M.A., K.M.J.P. El-Mahdy, Sulfur,, and Silicon, Synthesis and antimicrobial activity of some new heterocyclic Schiff bases derived from 2-amino-3-formylchromone. 2009. 184(11): p. 2945-2958.

Li, Y., Z.-Y. Yang, and J.-C. Wu, Synthesis, crystal structures, biological activities and fluorescence studies of transition metal complexes with 3-carbaldehyde chromone thiosemicarbazone. European Journal of Medicinal Chemistry, 2010. 45(12): p. 5692-5701.DOI: https://doi.org/10.1016/j.ejmech.2010.09.025.

Jiang, P. and Z. Guo, Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coordination Chemistry Reviews, 2004. 248(1-2): p. 205- 229.

Bajaj, L., et al., Synthesis and evaluation of 5,11-bis-(2-thioallylphenylazo)-25,26,27,28- tetrtahydroxycalix[4]arene and 5,11,17,23-tetrakis- (2-thiohexadecylphenylazo)-25,26,27,28- tetrahydroxycalix[4]arene aschromogenic receptors of Hg(II) and Pd(II) ions. Vol. 2005. 2005. 200-210.

Sohrabi, M., et al., A single chemosensor with combined ionophore/fluorophore moieties acting as a fluorescent “Off-On” Zn2+ sensor and a colorimetric sensor for Cu2+: Experimental, logic gate behavior and TD-DFT calculations. Sensors and Actuators B: Chemical, 2017. 250: p. 647- 658.DOI: https://doi.org/10.1016/j.snb.2017.05.015.

Ghorai, A., et al., A highly sensitive reversible fluorescent-colorimetric azino bis-Schiff base sensor for rapid detection of Pb2+ in aqueous media. Analytical Methods, 2016. 8(9): p. 2032-2040.DOI: 10.1039/C5AY03374H.

Helal, A. and H.-S. Kim, Thiazole-based chemosensor: synthesis and ratiometric fluorescence sensing of zinc. Tetrahedron Letters, 2009. 50(39): p. 5510-5515.DOI: https://doi.org/10.1016/j.tetlet.2009.07.078.

Latheef, L. and M.R. Prathapachandra Kurup, Spectral and structural studies of nickel(II) complexes of salicylaldehyde 3-azacyclothiosemicarbazones. Polyhedron, 2008. 27(1): p. 35-43.DOI: https://doi.org/10.1016/j.poly.2007.08.048.

An, M., et al., Fluorescence sensor for sequential detection of zinc and phosphate ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016. 169: p. 87-94.DOI: https://doi.org/10.1016/j.saa.2016.06.026.

Bai, X., et al., A multi-ion fluorescent probe for Mg2+/Zn2+ based on a novel chromone-dendron Schiff base. Inorganica Chimica Acta, 2018. 474: p. 44-50.DOI: https://doi.org/10.1016/j.ica.2018.01.008.

Downloads

Published

2022-01-30

How to Cite

Arifin, W. M. H. W. M., Juahir, Y., Ali, N. M., Bakar, N. A., Mustafar, S., Ahmad, M. S., Taha, H., Supian, F. L., & Osman, U. M. (2022). A selective fluorescent chemosensor based on chromone hydrazone ligand for Zinc ions. CENTRAL ASIA AND THE CAUCASUS, 23(1), 2011-2020. http://13.200.237.241/CAC/index.php/cac/article/view/265

Plaudit

Similar Articles

11-20 of 273

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)